The electronic supplementary information file

For

Capturing the effect of $[PF_3(C_2F_5)_3]^-$ vs. $[PF_6]^-$, flexible anion vs. rigid, and scaled charge vs. unit on the transport properties of $[bmim]^+$ -based ionic liquids: a comparative MD study

Mohammad H. Kowsari^{1,2,*} and Soraya Ebrahimi¹

 ¹ Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
 ² Center for Research in Climate Change and Global Warming (CRCC), Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran

*Corresponding author: Tel.: +98 24 3315 3207, Fax: +98 24 3315 3232. E-mail address: <u>mhkowsari@iasbs.ac.ir</u> and <u>mohammad.kowsari@gmail.com</u> ORCID Mohammad H. Kowsari: 0000-0003-4391-194X **Table S1.** Calculated cation and anion diffusion coefficients, D_i (in 10⁻¹¹ m² s⁻¹), from the slope of MSD plots (values of β are in the parentheses) and integration of the VACFs (values of errors are in the parentheses) and the calculated ionic conductivity from the Nernst–Einstein, σ_{NE} , and Green–Kubo relations, σ_{GK} , (in mS cm⁻¹) along with the experimental data at 400 K.

ILs	Scaling factor	Volume (10 ⁻²⁰ cm ³)	MSD		VACF		D_{Exp} .		σ (mS cm ⁻¹)			
									$\sigma_{\rm NE}$		_	σ_{Exp}
			D_+ (β)	<i>D</i> . (β)	D_+	D.	D_+	D.	MSD	VACF	OGK	(IIIS CIII)
[bmim][PF ₆]	Unit	5.38	3.65 (0.88)	3.39 (0.94)	5.26 (± 0.34)	4.66 (± 0.61)	20.92ª 17	17.86ª	9.12	12.69 (± 1.22)	9.74 (± 0.31)	32.5 ^b
	0.85	5.58	17.34 (0.99)	16.69 (1.04)	19.23 (± 0.33)	17.61 (± 0.24)			42.54	46.05 (± 0.75)	32.05 (± 4.74)	
	0.8	5.65	26.39 (0.96)	25.46 (1.00)	27.75 (± 1.09)	27.08 (± 0.68)			64.01	67.62 (± 2.21)	47.32	
[bmim][FAP]	Unit	9.63	6.54 (0.96)	5.91 (1.05)	$10.62 \\ (\pm 0.71)$	8.32 (± 0.26)			9.02	13.71 (± 0.71)	13.51 (± 0.12)	42.8°
	0.8	9.88	27.21 (1.01)	20.69 (1.02)	31.79 (± 3.82)	26.79 (± 4.03)			33.79	41.33 (± 5.21)	40.93 (± 2.04)	

^a Tokuda et al.¹

^b Zech et al.² at 398.15 K

^c Nazet et al.³ for [emim][FAP]) at 398.15 K (for comparison)

Table S2. Calculated cation and anion diffusion coefficients, D_i (in 10⁻¹¹ m² s⁻¹) from the slope of MSD plots (values of β are in the parentheses) and integration of the VACFs (values of errors are in the parentheses) together with the cationic transference number, t_+ , for [bmim][PF₆] and [bmim][FAP] ILs at 400 K and 1 atm.

п	Chargo	Anion		MSD plots		Integration of the VACFs			
([bmim][X])	model	model	D_+ (β)	<i>D</i> _ (β)	t_+	D_+	D.	t_+	
[bmim][PF ₆]	Unit	Rigid	2.88 (0.95)	1.82 (0.94)	0.61	4.56 (± 0.46)	2.93 (± 0.35)	0.61	
		Flexible	3.65 (0.88)	3.39 (0.94)	0.52	5.26 (± 0.34)	4.66 (± 0.61)	0.53	
	Scaled 0.85	Rigid	13.63 (1.01)	10.34 (1.01)	0.57	$15.65 (\pm 0.37)$	$11.80 \\ (\pm 0.40)$	0.57	
		Flexible	17.34 (0.99)	16.69 (1.04)	0.51	19.23 (± 0.33)	17.61 (± 0.24)	0.52	
[bmim][FAP]	Unit	Rigid	4.65 (1.05)	3.00 (0.96)	0.61	6.91 (± 0.88)	4.91 (± 0.24)	0.58	
		Flexible	6.54 (0.96)	5.91 (1.05)	0.53	$10.62 (\pm 0.71)$	$8.32 (\pm 0.26)$	0.56	
	Scaled 0.80	Rigid	20.08 (1.00)	14.58 (0.98)	0.58	24.16 (± 2.26)	17.41 (± 1.90)	0.58	
		Flexible	27.21 (1.01)	20.69 (1.02)	0.57	31.79 (± 2.82)	26.79 (± 2.61)	0.54	

Table S3. Computed values of D_+/D_- and HAP derived for pure [bmim][PF₆] and [bmim][FAP] from the simulations with different studied models at 400 K.

П	Charge	Anion	MS	SD	VACF		Other works	
([bmim][X])	model	model	D ₊ / D_	HAPa	D ₊ / D_	HAP ^a	D ₊ / D_	НАР
[bmim][PF ₆]	Unit	Rigid	1.58	2.08	1.56	2.06		
		Flexible	1.08	1.42	1.13	1.49	1.15 ^b 1.13 ^c 1.27 ^b	1.50 ^b 1.47 ^c 1.65 ^b
	Seeled 0.85	Rigid	1.32	1.74	1.33	1.75		
	Scaled 0.85	Flexible	1.04	1.37	1.09	1.44		
[bmim][FAP]	Linit	Rigid	1.55	1.38	1.41	1.25		
	Unit	Flexible	1.11	0.98	1.28	1.13		
	Sectod 0.90	Rigid	1.38	1.23	1.39	1.24		
	Scaleu 0.80	Flexible	1.32	1.17	1.19	1.06		

^a $r_{\text{[bmim]}^+} = 0.335 \text{ nm}, r_{\text{[PF6]}^-} = 0.254 \text{ nm}, r_{\text{[FAP]}^-} = 0.377 \text{ nm}^{4-6}$

^b Diffusion coefficients of ions from ref. 7.

^c Diffusion coefficients of ions from ref. 8.

Fig. S1. The MSDs for the COM and some atomic sites of rigid $[PF_6]^-$, rigid $[FAP]^-$ and flexible $[bmim]^+$ at 400 K.

Fig. S2. The calculated COM MSDs of flexible [bmim]⁺ and both flexible and rigid anions of two ILs at 400 K. The panels (a-d) are related to the unit charge model, and the panels (e-h) are related to the scaled charge model.

Fig. S3. The calculated normalized electric-current autocorrelation functions. Only the functions are shown up to 10 ps. The panels (a-d) are related to the unit charge model, and the panels (e-h) are related to the charge-scaled model.

Fig. S4. The calculated integrals of the normalized electric-current autocorrelation functions. The panels (a-d) are related to the unit charge model, and the panels (e-h) are related to the charge-scaled model.

References

[1] H. Tokuda, K. Hayamizu, K. Ishii, M. A. B. H. Susan, M. Watanabe, *J. Phys. Chem. B*, 2004, **108**, 16593–16600.

[2] O. Zech, A. Stoppa, R. Buchner and W. Kunz, J. Chem. Eng. Data, 2010, 55, 1774–1778.
[3] A. Nazet, S. Sokolov, T. Sonnleitner, T. Makino, M. Kanakubo and R. Buchner, J. Chem.

Eng. Data, 2015, **60**, 2400-2411; erratum: 2016, **61**, 699-699.

[4] V. Aravindan, J. Gnanaraj, S. Madhavi and H. K. Liu, Chem. Eur. J., 2011, 17, 14326-14346.

[5] M. Ue, J. Electrochem. Soc., 1994, 141, 3336-3342.

[6] M. Ue, A. Murakami, and S. Nakamura, J. Electrochem. Soc., 2002, 149, A1385-A1388.

[7] A. Noda, K. Hayamizu, and M. Watanabe, J. Phys. Chem. B, 2001, 105, 4603-4610.

[8] T. Umecky, M. Kanakubo, and Y. Ikushima, *Fluid phase Equilib.*, 2005, **228-229**, 329-333.