Supporting Information (SI) for:

New insights into the sensing mechanism of a phosphonate pyrene

chemosensor for TNT

Meiheng Lu,^{abc} Panwang Zhou,^a Zhongwei Li^a, Jianyong Liu^a, Yanqiang Yang,^d Keli Han*a

^aState Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China

^bCollege of Applied Chemistry, Shenyang University of Chemical Technology, Shenyang 110142, P. R. China

^cUniversity of Chinese Academy of Sciences, Beijing 100049, P. R. China

^dNational Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Chengdu 610200, P. R. China

Figure S1. Geometric structures of optimized compounds (a) PO, (b) front view of PO-TNT and (c) side view of PO-TNT in S₁ state.

Figure S2. Geometric structures of optimized compounds (a) PO1, (b) PO2, (c) PO1-TNT, (d) PO2-TNT, (e) side view of PO1-TNT and (f) side view of PO2-TNT on ground state. The primary plane distances are marked in the figure.

Figure S3. Geometric structures of optimized compounds (a) PE, (b) side view of PE, (c) PE-in-PETNT, (d) side view of PE-in-PETNT, (e) PE-TNT and (f) side view of PE-TNT on ground state. The primary plane distance is marked in the figure.

	Raw Energy (a.u.)	Relative Energy (kcal/mol)		
PE	-3515.078864	0		
PE-in-PETNT	-3515.075239	2.27ª		
РО	-2886.456959	0		
PO-in-POTNT ⁺	-2886.457447	-0.31 ^b		

Table S1. The Gibbs free energy data of PE, PE-in-PETNT, PO and PO-in-POTNT in S_0 state.

^a Relative energy compared with PE. ^b Relative energy compared with PO.

	Electronic transition	Wave length (nm)	Energy (ev)	f ^a	Contrib ^b	CIc	exp ^d (nm)
PO1							
Absorption	$S_0 \rightarrow S_1$	351.27	3.53	0.7662	H→L	0.96	375
Emission	$S_1 \rightarrow S_0$	367.32	3.38	1.1416	L→H	0.98	406
PO1-TNT							
Absorption	$S_0 \rightarrow S_5$	353.15	3.51	0.4965	H→L+3	0.69	
PO2							
Absorption	$S_0 \rightarrow S_1$	354.53	3.50	0.7810	H→L	0.96	375
Emission	$S_1 \rightarrow S_0$	370.30	3.35	1.1637	L→H	0.97	406
PO2-TNT							
Absorption	$S_0 \rightarrow S_{13}$	358.19	3.46	0.4247	H→L+1	0.70	

Table S2. The detailed theoretical and experimental electronic spectra data for PO1, PO2, PO1-TNT and PO2-TNT.

^a Oscillator strength. ^b H, highest occupied molecular orbital (HOMO) and L, lowest unoccupied molecular orbital (LUMO). ^c The CI coefficients are in absolute values. ^d The experimental electronic spectra data are from Ref. 26.

Figure S4. The calculated electronic spectra of PE and PE-TNT. The primary wavelengths (nm) of absorption and emission are marked and corresponding experimental values are given in the parenthesis.

Figure S5. Scheme of the sensing mechanisms and relevant frontier molecular orbitals for PO1-TNT (left) and PO2-TNT (right).

Table S3. Raw energy data related to the calculation of charge transfer rate.

	Energy (a.u.)				
PO*	-2885.96023842				
TNT	-884.747055012				
PO*…TNT	-3770.707293432				
PO ⁺	-2885.84398224				
TNT-	-884.888998441				
PO ⁺ ···TNT ⁻	-3770.732980681				
[PO*] ⁺	-2885.83670527				
[TNT] ⁻	-884.879346871				
[PO*] ⁺ [TNT] ⁻	-3770.716052141				
E _{L+1}	-0.0853				
EL	-0.0871				