Supporting Information

for

Photophysical properties of free-base and manganese(III) N-confused porphyrins

Li-Li Wang,1 Su-Hong Peng,2,3 Hui Wang,*,1 Liang-Nian Ji,1,4 and Hai-Yang Liu*,2

1 State Key Laboratory of Optoelectronics Materials and Technologies, Sun Yat-Sen University, Guangzhou 510275, China

2 Department of Chemistry, South China University of Technology, Guangzhou 510641, China

3 College of Chemistry and Bioengineering, Yichun University, Yichun 336000, China

4 School of Chemistry and Chemical Engineering/MOE Laboratory of Bioinorganic and Synthetic Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
1. 1H NMR Spectra of NCH$_3$NCTPPs.

NCTPPs and NCH$_3$NCTPPs were characterized by 1H NMR.1 Mn(Cl)NCH$_3$NCTPPs have been characterized by HR-MS spectroscopy.1 The 1H NMR spectra of NCH$_3$NCTPPs in CDCl$_3$ were recorded by using a Bruker Avance III 400 MHz spectrometer, which are shown in Figs. S1–S6. The 1H NMR chemical shifts (δ) were determined with tetramethylsilane (TMS) as the internal reference and reported in parts per million (ppm). The 1H NMR assignments for all protons of NCH$_3$NCTPPs are as followed: 1, the inner CH proton; 2, the inner NH proton; 3, three protons of the N-CH$_3$ group; 4, seven peripheral pyrrolic C–H protons; 5, sixteen or twenty $meso$ aryl protons; 6, twelve protons of the substituents of $meso$-phenyl rings. Impurity peaks marked with asterisks may be assigned to be the signals of the residual solvents: *, n-hexane; *, water; *, methanol; *, DCM.2

![Fig. S1 1H NMR spectrum of NCH$_3$NCTPP with para-H recorded in CDCl$_3$.](image-url)
Fig. S2 1H NMR spectrum of NCH$_3$NCTPP with para-Cl recorded in CDCl$_3$.

Fig. S3 1H NMR spectrum of NCH$_3$NCTPP with para-CH$_3$ recorded in CDCl$_3$.

Fig. S4 1H NMR spectrum of NCH$_3$NCTPP with para-OCH$_3$ recorded in CDCl$_3$.
Fig. S5 1H NMR spectrum of NCH$_3$NCTPP with *meta*-OCH$_3$ recorded in CDCl$_3$.

Fig. S6 1H NMR spectrum of NCH$_3$NCTPP with *ortho*-OCH$_3$ recorded in CDCl$_3$.

The triplet state dynamics of Mn(Cl)NCH$_3$NCTPPs and NCTPP with *para*-H were measured using laser flash photolysis apparatus with 532-nm excitation. The triplet absorption decay curves were well fitted with a single-exponential function convoluted with a Gaussian response function. The triplet quantum yield of NCTPP with *para*-H was calculated to be 0.30, using TPP in toluene as a reference ($\Phi_T^{(std)} = 0.80$, $\varepsilon_T^{(std)} \approx 35000 \text{ M}^{-1}\text{cm}^{-1}$). The T_1-state lifetime of NCTPP with *para*-H in deaerated toluene is fitted to be 47.5 μs, which is in agreement with the earlier report. Unfortunately, the 7T_1-state absorption of Mn(Cl)NCH$_3$NCTPPs in deaerated DCM were not detected by using the same experimental apparatus.

![Figure S7](image-url)

Fig. S7 Triplet kinetics (a–e) and spectra (f–j) of NCTPP with *para*-H in deaerated toluene and four Mn(Cl)NCH$_3$NCTPPs in deaerated DCM. Sample concentration was about 34 μM.

Fig. S8 Steady-state absorption spectra of solvents: (a) n-hexane, (b) DCM, (c) methanol, and (d) water.
References

