Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2018

Electronic Supplementary Information for

Fermi Resonance Controlled Product Branching in the H+HOD reaction

Bin Zhao^{1,2,*}, Uwe Manthe¹, and Hua Guo²

¹Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615

Bielefeld, Germany

²Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA

Results presented here are obtained by a reactant-coordinate based (RCB) method for state-to-state calculation 1 on the neural network fitted potential energy surface (PES) of the H_3O system. 2 Parameters of the calculation are listed in Table S-I.

Table S-I. Parameters used in the calculations for the HD + OH and $\rm H_2$ + OH abstraction channels (Atomic units are used if not otherwise stated)

channels (Atomic units are used if not other wise stated)				
Initial wave packet				
R_0	10.0			
δ	0.3			
k_0	$k_0 = \sqrt{2E_0\mu} \text{ with } E_0 = \begin{cases} 1.35 \text{ eV for } (000) \\ 0.90 \text{ eV for } (010), (100) (020) and (001) \end{cases}$			
Grid range and size for the reactant coordinates				
	HD + OH ch		H ₂ + OD channel	
R	$R \in (0.4,16.0), N_R^1 = 96, N_R^2 = 120$		$R \in (0.4,16.0), N_R^1 = 96, N_R^2 = 120$	
r_1	$r_1 \in (0.7,12.0), \ \upsilon_{int}^1 = 96, \ \upsilon_{asy}^1 = 8$		$r_1 \in (0.7,12.0), \ \nu_{int}^1 = 80, \ \nu_{asy}^1 = 8$	
r_2	$r_2 \in (0.7, 5.0), \ \upsilon_{int}^2 = \upsilon_{asy}^2 = 4$		$r_2 \in (0.7, 5.0), \ \upsilon_{int}^2 = \upsilon_{asy}^2 = 4$	
j_1	$j_1 \in (0,100)$		$j_1 \in (0,100)$	
j_2	$j_2 \in (0,20)$		$j_2 \in (0,20)$	
Grid range and size for the product coordinates				
r_1'	$r_1' \in (0.7, 5.0), v_1' = 4$		$r_1' \in (0.7,5.0), v_1'=4$	
r_2'	$r_2' \in (0.7,5.0), v_2'=4$		$r_2' \in (0.7, 5.0), v_2'=4$	
$\overline{j_1'}$	$j_1' \in (0,28)$		$j_1' \in (0.28)$	
j_2'	$j_2' \in (0,20)$		$j_2' \in (0,20)$	
Product projection planes: $R_p^{\infty} = 8.0$				
Absorbing Potential				
	C	\mathcal{X}_{s}	x_e	n
R	0.1	12.2	16.0	1.5
r_1	0.045	10.0	12.0	1.5
Total time/time step: 8000/10				
Flux plane: $r_1^{flux} = 7.0$				
Partial waves: $J_{tot} = 0-50$				
Reactant helicity quantum number: (0-6)				
Product helicity quantum number: (0-13)				

The initial wave packet is constructed as the direct product of an HOD eigenstate and a Gaussian wave packet in the translational coordinate R located in the reactant asymptote. The Gaussian wave packet is expressed in the following form,

$$G(R) = \left(\frac{1}{\pi \delta^2}\right)^{1/4} \exp\left[-\frac{(R - R_0)^2}{2\delta^2} - ik_0 R\right],$$
 (S1)

where $R_{\scriptscriptstyle 0}$, δ , and $k_{\scriptscriptstyle 0}$ are the central position, width, and momentum, respectively.

Absorbing potentials are used to prevent wave function reaching the boundary of grids and following form for $x = R, r_1$ is used:

$$V_{abs}(x) = -iC\left(\frac{x - x_s}{x_e - x_s}\right)^n, \qquad x_s \le x \le x_e,$$
 (S2)

where x_s and x_e denote the starting and ending positions of the absorbing potential, respectively, C is the strength parameter and n is the order of absorbing potential.

References:

- 1. B. Zhao, Z. Sun and H. Guo, J. Chem. Phys. **145** (18), 184106 (2016).
- 2. J. Chen, X. Xu, X. Xu and D. H. Zhang, J. Chem. Phys **138** (15), 154301 (2013).