
Calculating the pressure in a molecular dynamics simulation
in the presence of an applied electric feld

The pressure of the system can be calculated from a single MD snapshot using Equation
3 of the main paper, reproduced here for convenience as Equation S1. 
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P is the pressure,  N is the number of atoms,  k is the Boltzmann constant,  T is the
temperature, V is the volume, ri is the position of atom i, and fi is the force acting on
particle i.

In the presence of an external electric feld, the forces acting on charged particles due to
the applied feld should be included in Equation S1. The reasons for this are illustrated
in test cases 1 and 2 presented below. Test case 3 examines the requirements for the way
the initial geometry must be specifed in periodic MD simulations of a molecular liquid
in the presence of an applied feld.

Test case 1
A single, rigid, polar diatomic molecule, at rest, in a non-periodic cubic simulation cell

For a single molecule aligned with the feld that does not interact with the boundaries of
the simulation cell, the shake forces cancel the forces due to the electric feld perfectly
and keep the bond length fxed. The expected value of the total pressure in this scenario
is zero, and the correct value is obtained if both the forces due to the external electric
feld and the forces that keep the bond length fxed are included in Equation S1. The
same would  hold  for  a  “fexiblee  molecule  at  the  equilibrium bond  distance  in  the
presence of the applied feld.

 fEext = q·Eext

 fEext = -q·Eext

f shake = -(q·Eext)

f shake = -(-q·Eext)

(S1)
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If the forces due to the external electric feld are not included Equation S1, then the
calculated pressure will scale linearly with the strength of the applied feld.

Test case 2
A gas of rigid, polar, diatomic molecules in a non-periodic cubic simulation cell

The  table  below  summarizes  the  results  of  three  simulations  of  a  gas  of  27  polar
diatomic molecules in a 20 × 20 × 20 nm cubic simulation cell. Randomized velocities
were applied to all of the atoms at the start of each run, and then the simulations were
performed at constant volume and constant energy. In each case, three diferent methods
were used to calculate the pressure inside the simulation cell: the ideal gas law, direct
measurement of the forces on the boundary walls (P = F/A), and Equation S1.

E = 0.0 V/Å
E = 1.0 V/Å

Forces due to E-feld
included in Eqn. 1

Forces due to E-feld
not included in Eqn. 1

Average temperature 612 K 614 K 627 K

Pressure (ideal gas law) 2.85 × 104 Pa 2.86 × 104 Pa 2.92 × 104 Pa

Pressure (forces on 
boundary walls) 2.91 × 104 Pa 2.87 × 104 Pa 2.96 × 104 Pa

Pressure (Equation 1) 2.88 × 104 Pa 2.77 × 104 Pa -1.42 × 105 Pa

If the terms due to the external feld are excluded from Equation 1, a large negative
pressure is erroneously obtained. In simulations of a polar liquid at constant pressure
this  would  cause  the  density  of  the  liquid  to  increase,  until  the  fctitious  negative
contribution  to  the  pressure  is  cancelled  out  by  the  repulsive  forces  between  the
molecules of the compressed liquid.

Test case 3
Two rigid, polar, diatomic molecules, at rest, in a periodic simulation cell

The examples given below illustrate why care needs to be taken, when defning the
geometry in runs with an applied electric feld and a periodic simulation cell. Three
diferent ways of specifying the same periodic structure (except for a shift in the origin)
are illustrated below. The positions of the atoms are specifed in the format used in the
LAMMPS data  fle.  The simulation  cell  is  a  cube with  corners  at  (0,0,0),  (10,0,0),
(0,10,0), (0,0,10), etc.



 Input 1:

ID molecule type charge x y z
1 1 1 -1 3.0 0.0 2.0
2 1 2  1 3.0 0.0 4.0
3 2 1 -1 7.0 0.0 8.0
4 2 2  1 7.0 0.0 6.0

 Input 2:

ID molecule type charge x y z
1 1 1 -1 3.0 0.0 5.0
2 1 2  1 3.0 0.0 7.0
3 2 1 -1 7.0 0.0 1.0
4 2 2  1 7.0 0.0 9.0

 Input 3:

ID molecule type charge x y z nx ny nz
1 1 1 -1 3.0 0.0 5.0 0 0 0
2 1 2  1 3.0 0.0 7.0 0 0 0
3 2 1 -1 7.0 0.0 1.0 0 0 1
4 2 2  1 7.0 0.0 9.0 0 0 0

The energy of interaction between the system and the applied feld is calculated as 
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Alternatively, it can be calculated from the molecular dipoles, μ:

                

P.E. = -Σ
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μj·Eext
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In the structures specifed in inputs 1-3, P.E. = 0, because μ1 = -μ2. When Equation S2
is used to calculate the energy, the correct value of zero is obtained for input 1, but not
for input 2. This discrepancy is just another example of the well-known problems that
can arise when applying classical concepts of polarization to periodic systems. For a
detailed discussion of this matter, the reader is directed to e.g. N.A. Spaldin, Journal of
Solid  State  Chemistry  195,  pp.  2  (2012).  However,  in  the  present  case,  consistency
between equations S2 and S3 can be ensured by simply requiring that the geometry
should be specifed such, that all molecules remain “intacte. Whenever a molecule crosses
a boundary of the simulation cell, it is therefore necessary to specify, which atoms lie
“outsidee of the frst simulation cell.

In input 3, the nx, ny, and nz values specify that atom 3 is not in the frst simulation
cell, but in the next one along the positive direction of the z-axis. The absolute position
of atom 3 is thus (7.0, 0.0, 11.0). When the absolute positions of all of the atoms are
used to calculate the energy of interaction between the system and the external feld, the
correct value of zero is obtained.

In LAMMPS, all events where an atom crosses a boundary of the simulation cell are
tracked,  so it  is  easy to  ensure that  meaningful  results  will  be obtained by simply
defning the initial structure such, that all molecules are entirely within one simulation
cell. If a snapshot from a previous run is used as the initial geometry, then the nx, ny,
and nz values of each atom must be provided.

The discussion presented above also applies to the contribution of the electric feld terms
to pressure virial,  as the virial term is equal to -1/3V times the right hand side of
Equation S2.


