Unveiling the Multifunctional Roles of Hitherto Known Capping Ligand, Oleic Acid, as Blue Emitter and Sensitizer in Tuning the Emission Colour to White in Red-emitting Phosphors

S. Sekara, J. George Mullera, J. Karthikeyana,b, P. Murugana,b, N. Lakshminarasimhana,b,*

aFunctional Materials Division
CSIR-Central Electrochemical Research Institute
Karaikudi 630 003, Tamil Nadu, India.
bAcademy of Scientific and Innovative Research
CSIR Campus, Chennai 600 113, Tamil Nadu, India.

Fig. S1. Powder XRD patterns of Al\textsubscript{2}O\textsubscript{3} obtained by combustion synthesis and OA-modified Al\textsubscript{2}O\textsubscript{3} by hydrothermal method. All the reflections indexed based on the standard pattern ICDD (\#00-046-1212) confirm the formation of Al\textsubscript{2}O\textsubscript{3} with corundum structure with rhombohedral symmetry.
Fig. S2. FT-IR spectra of OA, Al₂O₃ and Al₂O₃/OA.
Fig. S3. Room temperature PL excitation ($\lambda_{\text{em.}} = 614$ nm) and emission ($\lambda_{\text{exc.}} = 394$ nm) spectra of ZnAl$_{2-x}$Eu$_x$O$_4$ samples revealing the different excitation and emission transitions of Eu$^{3+}$.

Fig. S4. FE-SEM images of (a), (b) ZnAl$_2$O$_4$ and (c), (d) ZnAl$_2$O$_4$/OA.
Fig. S5. TGA traces of ZnAl$_2$O$_4$ and ZnAl$_{1.995}$Eu$_{0.005}$O$_4$/OA.
Fig. S6. The DOS of bulk ZnAl$_2$O$_4$.
Fig. S7. The optimized structure of (311) surface of ZnAl$_2$O$_4$. Here, orange, pink, and blue, coloured balls represent Zn, A, and O atoms, respectively. The DOS of (311) surface of ZnAl$_2$O$_4$ is also shown.
Fig. S8. XPS core level spectra of Zn-2p (a and b), Al-2p (c and d) and O-1s (e and f) in pristine ZA:Eu$^{3+}$ and ZA:0.01Eu$^{3+}$/OA samples.
Fig. S9. Room temperature PL emission spectra of (a) pristine and OA-modified Y$_2$O$_3$:Eu$^{3+}$ and (b) OA and OA-modified Al$_2$O$_3$. The spectrum of OA was recorded in solution state.