Supporting Information

Derya Vural,^{1,2,3} Jeremy C. Smith,^{1,3} and Loukas Petridis^{1,3}

¹UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, P.O. Box 2008, Tennessee 37831 USA ²Department of Physics, Giresun University, Turkey,28200 ³Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA

FIG. S-1: The eigenvalues obtained from the covariance matrix at (top) 300 and (bottom) 480 K for (LHS) h = 0.05 and (RHS) $h = 0.25 g_{water}/g_{lignin}$.

FIG. S-2: Correlation of each monomer of a single lignin molecule at (top) 300 and (bottom) 480 K for (LHS) h = 0.05 and (RHS) $h = 0.25 g_{water}/g_{lignin}$. Correlation is calculated as $C_{ij} = v_{1,i}v_{1,j}/|v_{1,i}||v_{1,j}|$, where $v_{1,i}$ is the first eigenvector of carbon *i*.

FIG. S-3: Correlation of each monomer of a single lignin molecule (for other three lignin molecules) at 480 K for $h = 0.05 \ g_{water}/g_{lignin}$. Correlation is calculated as $C_{ij} = v_{1,i}v_{1,j}/|v_{1,i}||v_{1,j}|$, where $v_{1,i}$ is the first eigenvector of carbon *i*.

FIG. S-4: Incoherent intermediate scattering function I(Q, t) for lignin at 360 and 480 for 0 < t < 5 ns calculated from the second half of a 150-ns MD simulation (red open circles). The solid lines are the fits of $I_{KWW}(Q, t)$ to I(Q, t). (LHS) h = 0.05 and (RHS) $h = 0.25 g_{water}/g_{lignin}$. From top to bottom the Q values are 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8 and 2 Å⁻¹. Here, β is the free fitting parameter.

FIG. S-5: Incoherent intermediate scattering function I(Q, t) for lignin at 350, 370, 390, 420, 450 and 470 for $h = 0.05 \ g_{water}/g_{lignin}$ (red open circles). The solid lines are the fits of $I_{KWW}(Q, t)$ to I(Q, t). From top to bottom the Q values are 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8 and 2 Å⁻¹.

FIG. S-6: Incoherent intermediate scattering function I(Q, t) for lignin at 300, 320, 340, 380, 400, 420, 430, 450 and 460 for $h = 0.25 g_{water}/g_{lignin}$ (red open circles). The solid lines are the fits of $I_{KWW}(Q, t)$ to I(Q, t). From top to bottom the Q values are 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8 and 2 Å⁻¹.

FIG. S-7: τ versus temperature. The solid lines represent the fit of the VFT and the dashed line the fit of the Arrhenius function to τ for the Q-value : 0.4, 0.6, 0.8, 1.2, 1.4, 1.6 and 1.8 Å⁻¹. (LHS) h = 0.05 and (RHS) $h = 0.25 \ g_{water}/g_{lignin}$.

FIG. S-8: Fitting parameter for the Arrhenius (T < 400 K) and VFT (T > 400 K) fits to τ for $h = 0.05 \ g_{water}/g_{lignin}$. For VFT fit, B parameter was fixed a constant value B = 1325 K at Q = 0.1 Å⁻¹.

FIG. S-9: Fitting parameter for the Arrhenius (T < 360 K) and VFT (T > 360 K) fits to τ for $h = 0.25 \ g_{water}/g_{lignin}$. For VFT fit, B parameter was fixed a constant value B = 2443 K at Q = 0.1 Å⁻¹.

FIG. S-10: Time series of transitions between conformational states (top) 300 and (bottom) 480 K for (LHS) h = 0.05 and (RHS) $h = 0.25 g_{water}/g_{lignin}$.

FIG. S-11: The projection of the lignin trajectory onto v_1 (first principal component) and v_2 (second principal component) at (top) 300 and (bottom) 480 K for (LHS) h = 0.05 and (RHS) $h = 0.25 g_{water}/g_{lignin}$. z-axis represents the probability.

TABLE S-1: The primary sequence of the first lignin molecule
monomers linkages

\mathbf{S}	
\mathbf{S}	$\beta O4L$
G	$\beta O4R$
G	$\beta 5 L$
G	$\beta O4R$
\mathbf{S}	$\beta O4L$
G	$\beta 5 R$
G	$\beta O4L$
G	$\beta O4R$
\mathbf{S}	$\beta O4L$
G	$\beta O4R$
G	$\beta 5 L$
G	$\beta O4R$
\mathbf{S}	$\beta O4L$
G	$\beta O4R$
G	$\beta O4L$
G	$\beta O4R$
\mathbf{S}	$\beta O4L$
G	$\beta 5 R$
G	$\beta O4L$
G	$\beta O4R$
G	$\beta\beta$

TABLE S-2: The primary sequence of the second lignin molecule
monomers linkages
2

\mathbf{S}	
S	$\beta O4L$
G	$\beta O4R$
G	$\beta O4L$
G	$\beta O4R$
S	$\beta O4L$
G	$\beta O4R$
G	$\beta O4L$
G	$\beta O4R$
\mathbf{S}	$\beta O4L$
G	$\beta O4R$
G	$\beta 5 L$
G	$\beta O4R$
\mathbf{S}	$\beta O4L$
G	$\beta O4R$
G	$\beta 5 L$
G	$\beta O4R$
\mathbf{S}	$\beta O4L$
G	$\beta 5 \mathrm{R}$
G	$\beta 5 L$
G	$\beta 5 R$
G	$\beta\beta$

1	<i>J</i> 1		0
	monomers	linkages	
	S		
	S	$\beta O4L$	
	G	$\beta O4R$	
	G	$\beta O4L$	
	G	$\beta O4R$	
	S	$\beta O4L$	
	G	$\beta O4R$	
	G	$\beta 5 L$	
	G	$\beta 5 R$	
	S	$\beta O4L$	
	G	$\beta 5 R$	
	G	$\beta O4L$	
	G	$\beta O4R$	
	S	$\beta O4L$	
	G	$\beta O4R$	
	G	$\beta O4L$	
	G	$\beta O4R$	
	G	$\beta 5 L$	
	S	$\beta O4R$	
	G	$\beta O4L$	
	G	$\beta O4R$	
	G	$\beta\beta$	

TABLE S-3: The primary sequence of the third lignin molecule monomers linkages

TABLE S-4: The prin	nary sequence of the	fourth	lignin	molecule
	monomers linkages	3		
	a -			

\mathbf{S}	
G	$\beta 5 L$
G	$\beta O4R$
G	$\beta O4L$
G	$\beta 5 R$
S	$\beta O4L$
G	$\beta O4R$
G	$\beta O4L$
G	$\beta O4R$
\mathbf{S}	$\beta O4L$
G	$\beta O4R$
G	$\beta 5 L$
G	$\beta O4R$
\mathbf{S}	$\beta O4L$
G	$\beta O4R$
G	$\beta O4L$
G	$\beta O4R$
\mathbf{S}	$\beta O4L$
G	$\beta O4R$
\mathbf{S}	$\beta O4L$
G	$\beta 5 R$
G	$\beta\beta$

A. The Q-dependence of relaxation time τ

The Kohlrausch-Williams-Watts (KWW) stretched exponential function,

$$I(Q,t) \sim exp(-(t/\tau)^{\beta_I}) \tag{S-1}$$

and in the Gaussian approximation, the intermediate scattering function is

$$I(Q,t) \sim exp(-Q^2 \langle r^2 \rangle)$$

$$\sim exp(-Q^2 \langle t^{\beta_m})$$

(S-2)

where $\langle r^2 \rangle \sim t^{\beta_m}$. From Eq. (S-1) and Eq. (S-2),

$$exp(-(t/\tau)^{\beta_{I}}) \sim exp(-Q^{2}t^{\beta_{m}})$$

$$(\frac{t}{\tau})^{\beta} \sim Q^{2}t^{\beta}$$

$$\tau \sim Q^{-2/\beta}$$

$$\tau \sim Q^{-2/\beta_{\tau}}$$
(S-3)

where $\beta = \beta_{\tau} = \beta_I = \beta_m$.