Supporting Information for

Catalytic CO oxidation on B-doped and BN co-doped penta-graphene: A computational study

Ranganathan Krishnan, Shiuan-Yau Wu, and Hsin-Tsung Chen*
Department of Chemistry, Chung Yuan Christian University, Chungli District, Taoyuan City, 32023, Taiwan

*Corresponding author. E-mails: htchen@cycu.edu.tw (H.-T.C.); Tel: +886-3-265-3324
Figure S1. Optimized configurations and calculated formation energies of different B-doped and BN co-doped penta-graphene: (a) for different B-doped PG penta-graphene and (b), (c), (d), (e), (f) for different BN co-doped penta-graphene.

Figure S2. Optimized adsorption configurations: (a) O$_2$, (b) CO, (c) atomic O, (d) CO$_2$ at C=C site of the B-doped PG, and (e) pre-adsorption of CO on adsorbed O$_2$, (f) co-adsorption of O$_2$ and CO, and (g) co-adsorption of two CO at B=C site of the B-doped PG.
Figure S3. Optimized adsorption configurations: (a) O_2, (b) CO, (c) atomic O, (d) CO_2 at C=C site of the BN co-doped PG, and (e) pre-adsorption of CO on adsorbed O_2 and (f) co-adsorption of O_2 and CO at B=N site of the BN co-doped PG.

Figure S4. Minimum energy paths calculation for O_2 reduction process on (a) the B=C site and (b) the C=C site of B-doped penta-graphene.

Figure S5. Minimum energy paths calculation for O_2 reduction process on (a) the B=N site and (b) the C=C site of BN co-doped penta-graphene.
Figure S6. Minimum energy paths calculation for CO adsorption process on (a) the B=C site of B-doped penta-graphene and (b) the B=N site of BN co-doped penta-graphene.

Figure S7. The optimized configurations including predicted adsorption energies for O_2 adsorption the various doping concentration of PG (a) B_2C_{22}, (b) B_3C_{21}, (c) B_4C_{20}, (a') $B_2N_2C_{20}$, (b') $B_3N_3C_{18}$, and (c') $B_4N_4C_{16}$.