Supporting information (SI)

Predicting the Structural Evolution of Ge_n ($3 \le n \le 20$) Clusters: an Anion Photoelectron Spectroscopy Simulation

Wei An*

College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Songjiang District, Shanghai 201620, China

*E-mail: weian@sues.edu.cn

Figure S1. Simulated anion photoelectron spectra for low-lying isomers (**b** and **c**) of Ge_n^- ($3 \le n \le 20$), as in Figure 1.

Expt.^b

5

4.0

Figure S2. Simulated anion photoelectron spectra for the most likely isomers **a** of Ge_n^- ($3 \le n \le 20$) displayed side-by-side with experimental spectra retrieved from the literatures (a: ref.¹; b: ref.²).

Table S1. Calculated total energy (in Hartree) for low-lying isomers of Ge_n^- ($3 \le n \le 20$) at the PBEPBE/6-31+G(d) level. The numbers in bold are the lowest-energy.

		Isomers	
Ge _n ⁻	a	b	c
Ge ₃ -	-6224.0270911	-6223.9944786	
Ge ₄ ⁻	-8298.7510749	-8298.7478876	
Ge5-	-10373.4993225	-10373.4882103	-10373.4337560
Ge ₆ -	-12448.2230418	-12448.2289249	-12448.1161525
Ge ₇ -	-14522.9616085		
Ge ₈ -	-16597.6487733	-16597.6430033	
Ge9 ⁻	-18672.4017250	-18672.3850443	-18672.3822507
Ge ₁₀ ⁻	-20747.1382428	-20747.1461483	
$\operatorname{Ge}_{II}^{-}$	-22821.8419601	-22821.8316704	
$\operatorname{Ge}_{12}^{-}$	-24896.5470716	-24896.5679963	-24896.5467564
Ge ₁₃ ⁻	-26971.3069783	-26971.2724342	
Ge_{14}^{-}	-29046.0429485	-29046.0355122	
Ge ₁₅ -	-31120.7925017	-31120.7710081	-31120.7768035
Ge ₁₆ -	-33195.5014249	-33195.5081694	-33195.5011379
Ge ₁₇ ⁻	-35270.2311995	-35270.2158062	
Ge ₁₈ ⁻	-37344.9467376-	37344.9514816	-37344.9404279
Ge ₁₉ ⁻	-39419.6617534	-39419.6691929	—
Ge ₂₀ -	-41494.3712309	-41494.3852321	-41494.3834041

		Isomers			
Ge _n ⁻	a	b	с	ADE(eV) ¹	HOMO–LUMO gap (eV) ²
Ge ₃ -	0.00	0.89		1.70(b)	0.9(b)
Ge_4^-	0.00	0.09		2.20(b)	0.3(b)
Ge ₅ ⁻	0.00	0.30	1.78	2.88(b)/2.29(c)	0.3(b)/0.8(c)
Ge ₆ -	0.16	0.00	3.07	2.30(b)/3.83(c)	0.4(b)/1.3(c)
Ge ₇ -					
Ge ₈ -	0.00	0.16		2.29(b)	0.5(b)
Ge ₉ ⁻	0.00	0.45	0.53	3.00(b)/1.52(c)	0.6(b)/1.5(c)
Ge_{10}^{-}	0.22	0.00		2.47(b)	1.0(b)
Ge_{11}^{-}	0.00	0.28		1.66(b)	0.7(b)
Ge_{12}^{-}	0.57	0.00	0.58	2.62(b)/3.10(c)	0.8(b)/0.4(c)
Ge ₁₃ ⁻	0.00	0.94		1.90(b)	1.1(b)
$\operatorname{Ge}_{14}^{-}$	0.00	0.20		2.26(b)	1.1(b)
Ge_{15}^{-}	0.00	0.43	0.58	<i>s</i> -2.70, <i>t</i> -3.50(b)	0.8(b)
				<i>s</i> -2.18, <i>t</i> -3.10(c)	1.0(c)
				$1.51(d)^3$	1.2(d)
Ge ₁₆ ⁻	0.18	0.00	0.19	2.90(b)/3.00(c)	0.3(b)/0.3(c)
Ge_{17}^{-}	0.00	0.42		2.38(b)	1.1(b)
Ge_{18}^{-}	0.13	0.00	0.30	3.20(b)/2.37(c)	0.3(b)/1.0(c)
Ge ₁₉ ⁻	0.20	0.00		2.46(b)	1.0(b)
$\operatorname{Ge}_{20}^{-}$	0.38	0.00	0.05	$2.60(\mathbf{b})/2.80(\mathbf{c})$	1.1(b)/0.8(c)

Table S2. Relative stabilities (in eV) of Ge_n^- ($3 \le n \le 20$) with respect to the lowest-energy anion isomers as listed in Table S1.

¹Calculated adiabatic detachment energy (ADE) for anion isomers of **b** and **c** based on simulated PES in Figure S1.

²Calculated HOMO–LUMO gap for the corresponding neutral isomers of **b** and **c** based on simulated PES in Figure S1.

³Isomer **d** of Ge_{15}^{-} is 0.97eV higher relative to isomer **a**, displayed in Figure S1.

Anions	VDE (calcd.)
Ge ₃ -	$2.38^{[b]}(s-2.50, t-2.25)^{[a]}$
Ge ₄ -	<i>s</i> -1.99
Ge ₅ -	<i>s</i> -2.84
Ge ₆ -	s-2.20
Ge ₇ -	<i>s</i> -2.13
Ge ₈ -	2.90(s-2.72, t-3.08)
Ge ₉ -	3.56(<i>s</i> -3.49, <i>t</i> -3.62)
Ge_{10}	s-3.31
Ge_{II}	2.74(<i>s</i> -2.34, <i>t</i> -3.13)
$\operatorname{Ge}_{12}^{-}$	2.90(<i>s</i> -2.67, <i>t</i> -3.12)
Ge ₁₃ -	s-3.59
Ge_{14}	s-3.19
Ge ₁₅ -	s-3.25
Ge ₁₆ -	3.08(<i>s</i> -2.76, <i>t</i> -3.40)
Ge ₁₇ -	3.15(<i>s</i> -2.78, <i>t</i> -3.51)
Ge ₁₈ -	<i>s</i> -2.78
Ge ₁₉ -	3.19(s-2.88, t-3.50)
Ge_{20}	3.46(s-3.19, t-3.72)

Table S3. Calculated vertical detachment energy (VDE) for Ge_n^- ($3 \le n \le 20$) shown in Figure 1.

[a]The prefix *s*- and *d*- denote $\overline{\text{VDEs}}$ arising from the transitions to singlet and triplet state of neutral, respectively. [b]Arithmetic mean of *s*- and *d*-VDE assuming the weight of either transition to the observed VDE is equal.

References

- 1. Y. Negishi, H. Kawamata, F. Hayakawa, A. Nakajima and K. Kaya, *Chem. Phys. Lett.*, 1998, **294**, 370-376.
- 2. O. Cheshnovsky, S. H. Yang, C. L. Pettiette, M. J. Craycraft, Y. Liu and R. E. Smalley, *Chem. Phys. Lett.*, 1987, **138**, 119-124.