Gas-Phase Ozonolysis of Furan, Methylfurans, and Dimethylfurans in the Atmosphere

Mengke Li, a Yuhong Liu a and Liming Wang * a,b

a School of Chemistry & Chemical Engineering, South China University of Technology, Guangzhou 510640, China. Email: wanglm@scut.edu.cn
b Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou 510006, China.

Electronic Supplementary Information: Figure S1-S11

Figure S1. Structures at M06-2X/6-311++G(2df,2p) level
Figure S2. CASSCF(8,6)/6-311+G(d) calculation on CH2=CHCHO
Figure S3. The profiles of fractional yield of product channels in the ozonolysis of furan at 298 K and 760 Torr, obtained from RRKM-ME calculations based on F12/VTZ energies
Figure S4. Potential energy diagram for reaction between 2,5-DMF and O3 at CCSD(T)-F12a level with cc-pVDZ-F12 [cc-pVTZ-F12] basis set
Figure S5. Interconversions and isomerizations of 2,5-DMF-CI1-syn at RHF-CCSD(T)-F12a/cc-pVDZ-F12 level. Energies are relative to separate 2,5-DMF and O3
Figure S6. The profiles of fractional yield of product channels in the ozonolysis of 2,5-DMF at 298 K and 760 Torr, obtained from RRKM-ME calculations based on F12/VDZ energies
Figure S7. Interconversions and isomerizations of 3-MF-CI1-syn and 3-MF-CI3-syn at RHF-CCSD(T)-F12a/cc-pVDZ-F12 level. Energies are relative to separate 2,3-DMF and O3
Figure S8. Potential energy diagrams for reaction between 2-methylfuran and O3 at levels of CCSD(T)-F12a/cc-pVDZ-F12 [and CCSD(T)-F12a/cc-pVTZ-F12]
Figure S9. Interconversions and isomerizations of 3-MF-CI1-syn and 3-MF-CI3-syn at RHF-CCSD(T)-F12a/cc-pVDZ-F12 level. Energies are relative to separate 2,3-DMF and O3
Figure S10. Potential energy diagrams for reaction between 2,3-dimethylfuran and O3 at levels of CCSD(T)-F12a/cc-pVDZ-F12 [and CCSD(T)-F12a/cc-pVTZ-F12]
Figure S11. Interconversions and isomerizations of 2,3-DMF-CI1-syn and 2,3-DMF-CI3-syn at RHF-CCSD(T)-F12a/cc-pVDZ-F12 level. Energies are relative to separate 2,3-DMF and O3
Figure S1. Structures at M06-2X/6-311++G(2df,2p) level (bond lengths in Ångström).

Figure S2. CASSCF(8,6)/6-311+G(d) calculation on CH$_2$=CHCHOO: the NBO charges, the active orbitals and their orbital occupancies.

Figure S3. The profiles of fractional yield of product channels in the ozonolysis of furan at 298 K and 760 Torr, obtained from RRKM-ME calculations based on F12/VTZ energies.
Figure S4. Potential energy diagram for reaction between 2,5-DMF and O_3 at CCSD(T)-F12a level with cc-pVDZ-F12 [cc-pVTZ-F12] basis set.

Figure S5. Interconversions and isomerizations of 2,5-DMF-CI1-syn at RHF-CCSD(T)-F12a/cc-pVDZ-F12 level. Energies are relative to separate 2,5-DMF and O_3.
Figure S6. The profiles of fractional yield of product channels in the ozonolysis of 2,5-DMF at 298 K and 760 Torr, obtained from RRKM-ME calculations based on F12/VDZ energies.

Figure S7. Interconversions and isomerizations of 3-MF-CI1-*syn* and 3-MF-CI3-*syn* at RHF-CCSD(T)-F12a/cc-pVDZ-F12 level. Energies are relative to separate 2,3-DMF and O₃.
Figure S8. Potential energy diagrams for reaction between 2-methylfuran and O$_3$ at levels of CCSD(T)-F12a/cc-pVDZ-F12 [and CCSD(T)-F12a/cc-pVTZ-F12]
Figure S9. Interconversions and isomerizations of 3-MF-CI1-syn and 3-MF-CI3-syn at RHF-CCSD(T)-F12a/cc-pVDZ-F12 level. Energies are relative to separate 2,3-DMF and O₃.
Figure S10. Potential energy diagrams for reaction between 2,3-dimethylfuran and O$_3$ at levels of CCSD(T)-F12a/cc-pVDZ-F12 [and CCSD(T)-F12a/cc-pVTZ-F12]
Figure S11. Interconversions and isomerizations of 2,3-DMF-CI1-syn and 2,3-DMF-CI3-syn at RHF-CCSD(T)-F12a/cc-pVDZ-F12 level. Energies are relative to separate 2,3-DMF and O₃.