Electronic Supplementary Information (ESI)

Exploring the electronic structure of aluminum metal–organic framework Basolite A100: solid-state synchronous fluorescence spectroscopy reveals new charge excitation/relaxation pathways

Cole Grinnell and Alexander Samokhvalov*

*Correspondence:
Department of Chemistry, Morgan State University, 1700 East Cold Spring Lane, Baltimore, MD 21251, USA. Email Alexandr.Samokhvalov@morgan.edu
Figure S1. The solid-state “conventional” photoexcitation-wavelength dependent fluorescence emission spectra of an empty cuvette. a) \(\lambda_{\text{exc}} = 280 - 320 \text{ nm} \). b) \(\lambda_{\text{exc}} = 330 - 370 \text{ nm} \).
Figure S2. The solid-state synchronous fluorescence spectra of an empty cuvette at variable Δλ.

a) Δλ = 20 - 60 nm. b) Δλ = 70 - 110 nm.
Figure S3. Powder XRD patterns of Basolite A100. a) The hydA100. b) The asisA100.
Figure S4. Differential scanning calorimetry (DSC) of hydA100.
Figure S5. The solid-state synchronous fluorescence (excitation) spectra of hydA100 at Δλ = 80 nm with variable optical slits. a) 3 nm. b) 2 nm. c) 1 nm.