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The document presents the mathematical details of the concentrated solution theory which is the 

cornerstone of electrolyte response in Li-ion battery (LIB) system. Next, the double layer 

interactions and how all these jointly contribute to electrode impedance response are outlined.  
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S1. Concentrated Solution Theory Based Electrolyte Transport Description 

Typical Li-ion battery electrolyte is prepared by dissolving a lithium salt, e.g., 6LiPF  in an organic 

solvent(s). For the sake of generality, let this salt be 
p n

Li X   with stoichiometric coefficients ,p n   

and anion nz
X . Appropriate salt dissolution equilibrium is: 

p n

p n

Z z

p nLi X Li X     (S1) 

The electrolyte consists of three species: 

p, cation: pz
Li    

(S2) n, anion: nz
X    

s, solvent  

Charge neutrality is ensured in an electrolyte everywhere except inside the double layers: 

0p p n nz z    (S3) 

When the electrolyte is prepared, one can only alter salt concentration, C . Ionic concentrations 

are subsequently defined through their association with stoichiometries: 

p n

p n

C C
C

 
   (S4) 

And the statement of charge neutrality can be mathematically expressed as: 

0p p n nC z C z   (S5) 
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Let electrochemical potentials of the species (chemical potential for charge-less species) be noted 

by  . Gibbs – Duhem relation correlates these thermodynamic quantities with concentrations as 

follows: 

0p p n n s sC C C       (S6) 

The salt dissolution equilibrium (S1) correlates salt’s chemical potential with individual ionic 

electrochemical potentials via stoichiometries: 

p p n n      (S7) 

This gives an alternative expression of the Gibbs – Duhem relation: 

0s sC C     (S8) 

Electrochemical potentials of each of the ionic species are related to their respective 

concentrations, individual activities, and local electric potential1. The gradient in salt’s chemical 

potential exhibits the following dependence: 

       ln

p p n n

RT fC

    







  
  

ln
1 ln ln

ln

d f
RT C RT C

d C
   

 
      

 
  (S9) 

with p n     and  1 ln / lnd f d C   . Note that f  is salt activity coefficient and C  is salt 

concentration. f  is in fact made up of individual ionic activity coefficients, ,p nf f .   is otherwise 

known as the thermodynamic factor1, 2. 

 As mentioned earlier, there are more than one solute species. For such a multicomponent 

system, transport is dictated by Onsager – Stefan – Maxwell (OSM) relation (essentially a 

constitutive relation connecting fluxes with concentration gradients): 

,

j i i ji T
i

ij ij j

C N C NC C

RT




 
    








D
 (S10) 

The binary diffusivity tensor  ijD  is symmetric, i.e., only three independent diffusivities, namely 

psD : cationic diffusivity in the solvent, nsD : anionic diffusivity in the solvent and pnD : mutual 

diffusivity of cationic – ionic species. Thus, for the electrolyte system under consideration, one 

has to explicitly measure four properties: , ,, ps ns pn DD D . However, it is quite difficult to 

individually study ionic motion as the electrolyte solution is charge neutral for most practical 

length scales (except recent NMR measurements3, 4). The concentrated solution theory is a 

formalism which appropriately converts these immeasurable properties into measurable transport 

properties: salt diffusivity - D , transference number - pt , ionic conductivity -   and diffusional 

conductivity - D . As this alternate set is measured, the respective transport relations are used in 

the mathematical description. 
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 Even if one can write three OSM relations for each of the three species (p, n or s), only two 

of these are independent as the Gibbs – Duhem does not let all potentials be set independently. 

Given the interest in the ionic species, the solvent is treated as the reference phase to identify 

species flux. This is often stated as “carrying out calculations in the solvent frame”1. Solvent flux, 

s s sN C u  where su  is solvent velocity. This is the bulk velocity and will contribute in the presence 

of solvent flow, e.g., redox flow battery5. 

p T n p p n s p p s s

p

pn ps

C C C N C N C N C u

R

C

T


 
  

D D
 (S11) 

p n n pn T s n n s s
n

pn ns

C N C NC C C N C u

R

C

T


 
  

D D
 (S12) 

With rearrangement: 

p p T p sn s
p n p s

pn ps pn ps

C C C C CC C
N N u

RT


   
       




   
  D D D D

 (S13) 

pn s n T n s
p n n s

pn pn ns ns

CC C C C C C
N N u

RT


   
           





  D D D D
 (S14) 

Note that T p n sC C C C    is total concentration. Further, a solvent contribution can be 

eliminated from the above two expressions as (S13) (S14)
pn

ns ps

C C
  

DD
: 

1 1
                                                                      

n p p p p n p sn n n s
p n

ps pn ns pn ps ns ps pn ns pn ps ns

n p T

p n

ns ps

C C C C C C C CC C C C
N N

C C

RT


 

   
          

   

 
    









D D D D D D D D D D D D

D D

  

p n
p

ps ns ps
n T

n p

p p n s

ps pn ns pn ps ns

C C

C
N

RT

C

N
C C C

 




   
     

    
 

   










D D

D D

D

D D D D

 (S15) 

where p p n n         is used to eliminate gradient in anion electrochemical potential, n . 

Substituting (S15) in (S13): 

   
p T p T

p p p s

pn ns

CC C C
N u

RT RT
C   

DD
 (S16) 

where   p n s

ps pn ns pn ps ns

C C C 
    
 D D DD D D

.  
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Ionic current is given by: 

p p n nI z FN z FN   (S17) 

Substituting for pN  and nN  (equations S15 and S16): 

lnD CI        (S18) 

 2 /
p nT

n

ps ns

CC
z

RT
F

 


 
     

 D D
  (S19) 

 /T
D n

ps

CC F
RT

RT
z    

D
  (S20) 

Replacing p F     in (S16) with (S18): 

p p p p s

p

I
N D Cu

z F
C t     (S21) 

 
1 1T

pn p ns n ps

D
C 

 

  
  

  D D D
  (S22) 

   

/

/ /

n ns
p

p ps n ns

t


 




D

D D
  (S23) 

Equivalently, the anionic flux can be obtained by substituting pN  (S21) in I  (S17): 

p

n p

n n

zI
N N

z F z
   (S24) 

 1
p

n p p p s n p n s

n n p n

zI
D Cu D Cu

z F z F F

I I
N C t C t

z z
   

 
            

 

 (S25) 

In summary, one requires the knowledge of four independent properties - , ,pD t   and D  to 

thoroughly characterize a typical Li-ion battery electrolyte (e.g. 6). Given the local charge 

neutrality, one often uses one of the fluxes and ionic current expression for the transport 

description. In LIBs, since Li  is the ion of choice, equations (S18) and (S21) are used as 

representative transport laws. Note that the salt diffusivity, D , has contributions from all the binary 

diffusivities as well as the thermodynamic factor. The elegance of this theory lies in the fact that 

one need not back-compute ‘elemental’ properties (i.e., , , ,ps ns pn D D D ) and a measurement of 

composite properties , , ,p DD t    is sufficient. This is also mathematically efficient as one need 

not explicitly worry about anion transport. 

 As a side note, a dilute solution theory employs Nernst – Planck relations to express ionic 

fluxes (i.e., the constitutive relation). Such a description does neither account for interspecies 

interaction (resulting from cross-diffusion, e.g., pnD ) nor intraspecies interaction (resulting from 

activity coefficient/ thermodynamic factor). 



S5 

 

S2. Electrochemical Response of a Double Layer 

The assumption of local charge neutrality is in general not valid near a solid – electrolyte interface. 

Ionic species often get preferentially adsorbed at the interface and to counter this charged surface, 

the electrolyte in the close proximity adopts an opposite charge (often referred to as the screening 

charge). Such an ordering spans a couple of nanometers and the relevant length scale is commonly 

referred to as the Debye length1, 7. This confined structure incorporates the Helmholtz planes and 

the diffuse layer (which contains the screening charge) and is referred to as the (electrochemical) 

double layer. Notice that the charge separation takes place within this space and as a whole (i.e., 

globally) the double layer is charge neutral (equivalent to saying that the capacitor is charge neutral 

with identical but opposite charges on either plates8). This is different than both the bulk phases 

(solid and electrolyte) which are both globally as well as locally charge neutral.  

In porous electrodes, the electrode-electrolyte interface is present throughout the electrode 

volume. Hence, the double layer dynamics is to be appropriately scaled up to the representative 

elementary volume length scale. Following up the same notation as earlier, the adsorbed charge 

is: 

ad ad ad sc

p p n nq z Fc z Fc q     (S26) 

where the first equality follows from the Faraday’s law1, while the second one expresses the global 

charge neutrality of the double layer, i.e., qad + qsc = 0. Note that the lower-case concentration c’s 

are area specific, i.e., in mol/m2, in contrast to the volumetric counterparts used in transport 

discussion (C’s are expressed in mol/m3). Effectively,  dc C x   with integration being carried 

out over the adsorbed or screen layers. The screening charge, qsc, is correlated to corresponding 

ionic concentrations as: 

sc sc sc

p p n nq z Fc z Fc   (S27) 

Total salt concentration in the double layer is: 

ad sc ad sc
p p n n

p n

c c c c
c

 

 
   (S28) 

The statement of global double layer charge neutrality, in fact, follows from (S3) and (S28): 

      0ad sc ad sc ad sc

p p p n n n p p n nq q z F c c z F c c z z Fc        (S29) 

In general, both the ionic species can be present in ‘adsorbed’ as well as ‘screening’ states. Hence, 

total salt concentration in a double layer, c, and double layer charge, qad (or equivalently qsc) are 

not one-to-one related. Let c  be the charge corresponding to the degree of non-neutrality as: 

ad ad
p n

p n

c c
c

 
   (S30) 
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If cations adsorb more than the anions, c , is positive, else it is negative. 0c   signifies identical 

adsorption for both the ions. Substituting for 
ad

pc  in (S26): 

ad

p nad ad ad ad

p p n n p p n n p p

n

c
cz Fc z F z F z Fcc z Fq c


 



 
       

 

 (S31) 

Equivalently, it can be shown that, 

sc

n nq z Fc  (S32) 

Thus, concentration c  directly correlates to the amount of charge separated (equivalently stored) 

in the double layer. Consequently, the total salt concentration in the double layer is: 

ad sc ad sc scad ad ad
p p p p pn n n

p p n p n p n

c c c cc c c
c c

c

      

 
        








  

Let neutral salt concentration in the ‘adsorbed’ and ‘screened’ states be cad and csc, respectively. 

Hence, the above expression can be simplified as: 

ad sccc c c   (S33) 

Equation (S33) divides the total salt concentration in the double layer into three forms: c  related 

to stored charge, and cad, csc which characterize the portions of adsorbed (and screened) ions that 

nullify each other. Based on charge measurements, c  can be back inferred, while the other two 

cannot be so easily detected. Here on it is often assumed that cation is present in the adsorbed state, 

while anion is the screening charge9. This makes cad = csc = 0, and double layer charge and salt 

concentration become uniquely related: 

ad

p pq z Fc  (S34) 

This assumption is important since the electrolyte species balance is expressed in terms of salt 

concentration. The adsorbed charge relates to the potential drop between the (bulk) electrode and 

(bulk) electrolyte as, with dlC  being area specific double layer capacitance – measured in F/m2: 

 dl s eq   C  (S35) 

Or, in terms of charging/ discharging: 

 s e

dl

ddq

dt dt

 
 C  (S36) 

Here it is assumed that the double layer capacitance, dlC  is not a function of salt concentration or 

potentials. Combining, (S34) and (S36): 

 s e

dl p p

ddq dc
z F

dt dt dt

 



 C  (S37) 

dc/dt can be interpreted as salt flux into the double layer, per unit electrode – electrolyte surface. 

For a porous electrode, the equivalent volumetric form is: 
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 
0 0

s e

dl p p p p

ddQ dc dC
a z Fa z F

dt dt dt dt

 
 


  C  (S38) 

where Q is charge stored in double layer per unit electrode volume, a0 is electrode – electrolyte 

interfacial area and C is a salt concentration in the double layer per unit electrode volume. A 

positive dQ/dt signifies charging of the electrochemical double layer and is equivalent to the 

charging current. When current dQ/dt is passed, cations (in the present context) get adsorbed at a 

rate / /p p td dt dC dC  , and correspondingly anions arrange in the diffuse layer to screen this 

charge. 

Sign convention: 

There are two forms of current at the electrochemically active interface – faradic (related to 

electrochemical reactions; here intercalation) and capacitive (related to double layer charging). 

The faradic current is considered positive when cations are generated in the electrolyte (i.e., the 

deintercalation process). Double layer charging in a given electrode volume implies, accumulation 

of additional ions at the active interface. To be consistent with the sign convention of the faradic 

current, capacitive current is considered positive when it stores more ions. Mathematically, 

 
0

s e

c dl

ddQ
j a

dt dt

 
  C  (S39) 

with Q being the double layer charge. Thus, the salt concentration can increase due to ionic flux 

(diffusive, migrative or advective), electrochemical reactions and double layer charging. The net 

salt concentration, C, in a given electrode volume implicitly accounts for the charge stored in the 

double layer as well and one does not require independent species balance equation. 

 p

p f c

C
N r

t
r


    


 (S40) 

where rf is generation term from the faradic current and rc for the double layer charging. Equivalent 

charge balance is: 

  0f cjI j     (S41) 

Since, intercalation reaction is always expressed as the generation of one Li+, rf = jf/zpF. And, rc = 

jc/zpF. With these substitutions, (S40) simplifies to, 

 
1p f c

p p

p p p

I
Fz F

C j j
D C t

t z F z

 
 



  
        

  
 (S42) 

 p p f c
p f c

p p p

C t j j
D jC

F
j

t z z F zF

 
 



  
       

  
  (S43) 

   1 1
p f c

p p p

p p

C j j
D C t t

t z F z F

 
 



  
        

  
 (S44) 
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where transference number, tp, is fairly constant over a wide range of concentrations and its spatial 

dependence can be neglected (going from (S42) to (S43)). For Li+, zp = 1, and for a typical salt 

such as LiPF6, 1p  . This simplifies (S44) as: 

 1 ptC
D C j

t F






  
    

  
 (S45) 

and charge balance in solid and electrolyte phases as: 

ln 0e D C j
 

  
 

   
         

   
 (S46) 

eff 2

s j     (S47) 

where intercalation and double layer charging terms are grouped together as j = jf + jc. Note that 

for transport through porous electrodes, porosity and tortuosity terms appear as pre-factors. In most 

of the existing literature (except9, 10), the origins of the double layer impedance are not explained. 

The preceding discussion is incorporated so as to revisit the specific details of double layer 

description, specifically the associated assumptions. 

 

S3. Mathematical Details of Electrode Impedance 

For the most part, literature analyzes the impedance data via circuit-based models11-18, except a 

few works9, 19-21. At best this sort of interpretation identifies the order of various transport processes 

but offers little insights into microstructural details or spatial coupling of different resistive modes. 

For a typical electrode, lateral dimensions are quite larger than the thickness, hence the derivative 

operator,  , needs to be expressed in this direction. Accounting for the intercalation based Li 

storage in active material particles, the electrochemical response of a porous intercalation electrode 

is mathematically described by the following set of governing equations. Subscripts ‘s’ and ‘e’ 

denote solid and electrolyte phase properties, respectively. 

Li storage in active material particles:  

2

2

1s s
s

C C

t r r
D r

r

 
  



 



 


 (S48) 

Li+ transport in the electrolyte phase:  

1 pe e
e

tC C
D j

t x x F






    
    

     
  (S49) 

(Electronic) Charge conservation in the solid phase:  
2

eff

2

s

x
j







  (S50) 

(Ionic) Charge conservation in the electrolyte phase:  

0
lne e

D

C

x x x x
j

 
 
 

     
     

   



   
  (S51) 

As discussed earlier, the electrolyte transport description is in accordance with the concentrated 

solution theory1, 2. Transport of both anion and cation take place in such liquid electrolytes, and 
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given the local charge neutrality, only cation transport (S49) is explicitly followed in the present 

discussion. Porosity ( ), tortuosity ( ) and effective electronic conductivity (
eff ) appearing in 

these expressions account for electrode microstructural effects. Additionally, electrochemically 

active area factors in this electrochemical response when charge conversion from electronic to 

ionic or vice versa (i.e., electrochemical reaction flux) is considered. Volumetric current source 

term, j , quantifies the reactions taking place at the RVE scale, and has both faradic and capacitive 

contributions, i.e., f cj j j  . The faradic (or intercalation) term has the following functional 

dependence: 

 
   

2 2
s e s e

F F

f max f RT RT
f s e

U U

s sj ak C C CC e e
       

 
 

     (S52) 

As the active material – electrolyte interface is partly covered due to the presence of the CBD 

phase, this volumetric flux (only the faradic component) has to be appropriately redistributed over 

the particle surface to ensure flux continuity. Subsequently, the intercalation flux at the active 

material surface becomes: 

0p

fs
s

r R

C

r

j
D

a F





   (S53) 

where 0 3 /s pa R  is the theoretical active area. The capacitive flux results from double layer 

charging/ discharging at the solid – electrolyte interface. Double layer as a whole is charge neutral1 

and accordingly, its participation can be quantified as a flux of either of the ions. Here electrolyte 

interactions are presented in the form of cation transport (S49) and ionic charge balance (S51). 

The microstructural properties have been characterized based on pore-scale analysis of 

composite electrode. Based on these calculations, relevant properties such as tortuosity, 

conductivity, and electrochemically active area have been expressed as functions of electrode 

recipe. Interested readers are encouraged to read22, 23. These expressions detail the electrode 

response in the time domain. These governing equations are transformed to the frequency domain 

using the Laplace transform. The mathematical treatment is similar to that carried out earlier21, 24, 

25 with advances made to account for electrode microstructural properties coming from pore-scale 

calculations. First, the equations are linearized around an equilibrium state (impedance 

measurements are often carried out in the rest phase). This leads to the following forms of 

equations (S48) to (S52): 
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 
      



    
  (S58) 

where transport properties and rate constants are computed using equilibrium state concentrations 

and potentials (refer to Table S1 for values). All the dashed quantities correspond to fluctuations 

around the respective rest phase properties. Note that expression (S58) is the faradic current, i.e., 

associated with electrochemical reactions. The terms inside the square brackets refer to exchange 

current density, that is dependent on the lithiation extent. 

   0

max

s s e s si C k CC C C  (S59) 

An additional current contribution arises from charging/ discharging of the double layer capacitor 

associated with the electrified interface1, 7, 9, and is expressed as follows (assuming that the 

capacitance is same for the active material – electrolyte and CBD – electrolyte interfaces): 

 
0

' '
'

s e

c dl

d
a

dt
j

 
 C  (S60) 

Net volumetric current appearing at the RVE scale is ' ' 'f cj j j  . Taking the Laplace transform 

of expression (S54) and using the rule for the transform of differentiation26, the following ordinary 

differential equation results ( s i ): 

2

2

1
0s

s

s

dd s
r

r dr dr

c
c

D

  
   

   
  

whose solution is (where 
2 / ss D  ): 

 sinhsc r
A

r
   

Note that boundary condition at the particle center (that the concentration should be finite) has 

been used. The remaining integration constant – A , shall be identified using the interface condition 

(frequency domain counterpart of expression S53): 
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 (S61) 

Subsequently, the volumetric faradic current (Eq. S58) is: 
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(S62) 

with 0 0/ctR RT a i F . Both the capacitive and faradic currents flow in parallel, resulting in the 

following form of the interfacial impedance at the RVE scale: 
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s e s e s e
f c

f icZ Z
j j j
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     (S63) 

where 01/c dlZ a i C  and  /i f c f cZ Z Z Z Z  . 

 Note that this derivation assumes a monodisperse active material particle system since the 

motivation for the present study is to understand the coupling of RVE scale effects and their 

upscaling to the electrode scale. The complexations arising in the intercalation dynamics due to 

particle size distribution are fairly straightforward21. 

Given the analytical expression (S63) for the interfacial impedance, the set of equations 

describing the electrode scale impedance reduces to the following: 
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along with the set of boundary conditions: 

electrode – separator boundary electrode – current collector boundary  

 1 pe
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The specification of these boundary conditions is critical to quantification of the electrode 

impedance spectra. Experimentally electrode impedance is measured in a half-cell setting where 

the test electrode is set against Li metal anode and the two are separated by a porous separator12. 

At the anode-separator interface, applied current translates to ionic current. No electrochemical 

reactions take place inside the separator and in turn, the ionic fluxes remain invariant across the 

separator (this does allow a concentration profile to evolve such that the ionic fluxes are spatially 

invariant). At anode-separator interface, Li+ ions are generated. This leads to the flux balance: 

 1 pp appe e
e app e app
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N D I
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F F Fx
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
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


 . Also, the ionic current at any location 

in the separator is equal to the total current being passed through the cell, i.e.,

lne e
app D

C

x x
I

 
 
 





 




 . Since no electronic current can enter through the separator – 

cathode interface, corresponding gradient in the solid phase potential is set to zero in expression 

(S68). On the other hand, the current collector is impervious to ionic flux, i.e., 0eC
x




 . To 

make the set of governing equations well-posed, one has to fix one of the potentials. Electrolyte 
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phase potential is fixed at the current collector boundary (S68). At current collector, all the current 

becomes electronic in nature and equation (S69) ensures this physics. 

The set of ordinary differential equations (S64) to (S66) along with the boundary conditions 

(S67) to (S69) are numerically solved. Afterward, the electrode impedance is computed as the 

equation: 

   0s e

electrode

app

x L x
Z

I

   
  (S70) 

Here appI  is applied current density (A/m2) in the frequency domain. Note that this is the 

impedance of the porous electrode only. Experimentally one uses a half-cell setup in order to 

measure the electrode impedance. A half-cell configuration involves a Li metal anode, suitable 

separator and the test porous electrode. The half-cell impedance involves contributions from the 

interfacial impedance of Li metal anode as well as ionic transport resistance of separator (a 

function of separator microstructure), in addition to the electrode impedance. One needs to carry 

out further post-processing steps on experimentally measured impedance spectrum (i.e., a half-

cell) in order to extract electrode only impedance.  

 

 

Figure S1: Lithiation dependence stems from changes in exchange current density and electrode potential with 

intercalation (a). This directly correlates to interfacial effects and accordingly, the lower frequency behavior (b) 

and (c) changes with lithiation. 

 

Figure S1 reports the evolution of impedance with lithiation, for 50 μm thick porous intercalation 

electrodes with Nickel Cobalt Manganese oxide (NCM 333) active material, acetylene black 

conductive additives and poly (vinyldenedifluoride) binder in proportional 95 : 2.5 : 2.5 by weight 

and 25 % porosity. The active material particles have a mean particle radius of 5 μm. Relevant 

material properties have been borrowed from literature and have also been listed in authors’ earlier 

articles22, 23. The respective microstructural properties have been estimated based on the effective 

property relations reported recently22. With lithiation (Figure S1(a)), the interfacial impedance 

changes in response to changes in the exchange current density as well as the slope of the open 

circuit potential profile (S61), while the microstructural properties stay unchanged. Corresponding 

impedance spectra are sketched in Figure S1(b) and report the variation of impedance over a range 

of excitation frequencies 0.1 mHz to 10 kHz. General nature of the impedance plot (Figure S1 (b)) 

shows two smoothly joined circular portions and a low-frequency tail. Since the impedance in 
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intercalation electrodes has contributions from various resistive mechanisms and double layer 

capacitance, corresponding phase angle quantitatively isolates the relative contribution of these 

effects (Figure S1 (c)). The closer the phase angle to zero, the greater is the resistive contribution. 

Figure S1 (c) reveals that changes in lithiation only affects the lower frequency impedances, while 

the higher frequency response stays invariant. In other words, the higher frequency behavior is 

dominated by interactions not associated with intercalation. These higher frequencies, in fact, 

probe the transport characteristics. Interestingly, even at much higher frequencies, the phase angle 

is not zero, suggesting that the double layer charging does contribute in this range. This joint 

interplay between double layer effects and transport resistances (both ionic and electronic) give 

rise to the second high-frequency semi-circle as apparent in Figure S1 (b). Note that this feature 

appears in the frequency range of 0.1 – 10 kHz. 

 

Table S1: A summary of physical properties along with their description, values, and functional dependences. 

Property Description Units 

a   Electrochemically active area m2/m3 

0a   Theoretical electrochemically active area m2/m3 

dlC   Double layer capacitance (0.1) F/m2 

eC   Li+ concentration in electrolyte (1200.0) mol/m3 

sC  Li concentration in active material particle (max = 49500.0) mol/m3 

sD   Diffusivity for Li intercalation in active material (3.0×10-15) m2/s 

eD   Diffusivity for Li+ transport in bulk electrolyte 

 

54 0.22
8.43

10005
229
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e

e
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C
T

e eD C T

 
       

     
     

m2/s 

F   Faraday’s constant (96487) C/mol 

0i   Exchange current density for intercalation reaction (per unit 

area of the electrochemically active interface) 

A/m2 

appI   Applied current density A/m2 

j   Volumetric current A/m3 

k   Reaction rate constant (2.3327×10-6) A/m2(mol/m3)3/2 

L   Electrode thickness m 

r  Radial coordinate – along the active material particle radius m 

pR   Particle radius (5.0×10-6) m 

R   Universal gas constant (8.314) J/mol·K 
t  Time  s 

pt   Transference number (0.38) - 

T   Temperature of operation (298) K 
U   Open circuit potential for electrode active material (here 

NCM) 

 

 

2 3

5

6.0826 6.9922 7.1062 2.5947

          5.4549 exp 124.23 114.259310

U y y y y

y

  

 


 

V 
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x  Spatial coordinate – along electrode thickness 

0x   : separator – electrode interface 

x L : electrode – current collector interface 

m 

y   Intercalation fraction in active material: / max

s sy C C   - 

Z   (area specific) impedance Ω·m2 

Greek symbols: 
   Porosity/ electrolyte volume m3/m3 

e   Electric potential in the electrolyte phase V 

s   Electric potential in the solid phase V 

   Ionic conductivity of bulk electrolyte S/m 
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D   Diffusional conductivity of bulk electrolyte A/m 

 

  
3

0.90.601 0.240
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28 1 0.0052 294D e e
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
     

 
  

eff   Effective electronic conductivity of composite electrode S/m 

   Tortuosity of electrolyte-filled pore network m/m 
   Excitation frequency rad/s 

Superscripts: 

‘ Departure from equilibrium state  

~ 
Frequency domain variable for the corresponding time 

domain variable 
 

Abbreviations: 

CBD Conductive Binder Domains  

NCM Nickel Cobalt Manganese oxide  

RVE Representative Volume Element  

 

S4. Impedance for a Multivalent Intercalation Chemistry 

If the ionic charge on the cation is higher than 1+, the previous set of equations have to be 

appropriately revised. Specifically, a higher valence cation exhibits a smaller molar flux, 

subsequently reducing the diffusional impedance (S62): 

 
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 


  
 

   (S71) 

This effectively increases the capacitive contribution and the low-frequency diffusional tail 

demonstrates a greater slope on the impedance profile as apparent in Figure S2. Another 
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representative change occurs for the electrolyte transport (refer equation (S23)), where a 

multivalent cation has a higher transference number: 

   

/

/ /

p psn ns
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ps n nss pp p n ns
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z z
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 
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

DD

D DD D
 (S72) 

Note that the diffusivities in the above expression also change in response to changes in ionic radii 

as well as background solvent. This A higher transference number implies that the contribution of 

cationic flux to total current increases1, 27, and effectively the electrolyte phase potential drop 

decreases. This attenuates the second – higher frequency semicircle (Figure S2). Figure S2 

sketches these qualitative differences among the intercalation response with multivalent cations. 
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 (S73) 

 

Figure S2: As cationic charge increases; diffusional impedance decreases which result in a higher slope low-

frequency tail. Moreover, a multivalent cation has a greater transference number and in turn, electrolyte transport 

resistance decreases. Here material nonlinearities, e.g., multiphase intercalation, have not been accounted for. 

In addition to these non-monotonic trends, often intercalation for multivalent cations takes place 

in multiple stages. Such multistage intercalation28, 29 brings in material nonlinearities and further 

alters the impedance response. 
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