Supporting Information for:

Deciphering the helicity switching mechanism: A case study of the rigid three-tiered stacked architecture

Peng Liu,†‡,∗ Yingzhe Liu,§ Xihui Bian,†‡ and Xiaoyao Tan†‡

* To whom correspondence should be addressed. E-mail: liupeng012@tjpu.edu.cn.
Figure S1. (A) Initial structure of the molecular system for the three-tiered stacked architecture (3T) within a toluene box. (B) Connolly surface of 3T. The evolution of (C) the root-mean-square deviation and (D) the area of Connolly surface of 3T in the 8 ns equilibrium simulation.
Evaluation of correlations for the rotation of rings within 3T.

Three benzene rings attached to the middle tier rotate simultaneously in a synchronous manner (clockwise-clockwise-clockwise or anticlockwise-anticlockwise-anticlockwise, see Figure S2D). In order to identify the correlated movement of rings, the percentages of the conformations of 3T with three, two, and zero simultaneously rotating ring(s) were monitored in the course of the helicity switching as shown in Figure S2E. In the whole switching process, the ones involving three, two, and none simultaneously rotating ring(s) occupy ca. 70 %, 20 %, and 10 %, respectively. These ratios fluctuate around initial values. In can be concluded that rotations of three peripheral rings attached to the middle tier are coupled. In the metastable state, the conformations with three simultaneously rotating rings occupy a major share, not a dominating share.

Three benzene rings within the same chain rotate simultaneously in an alternative manner (clockwise-anticlockwise-clockwise or anticlockwise-clockwise-anticlockwise, see Figure S2F). In order to identify the correlated movement of benzene rings, the percentages of the conformations of 3T with three, two, and zero simultaneously rotating ring(s) were monitored in the course of the helicity switching as shown in Figure S2G, S2H, and S2I. In the region near 0º and 180º, corresponding to the stable states, there are ca. 15 % conformations with none correlated rings. In all the conformations, the ones involving three simultaneously rotating rings occupy ca. 70 %. In the metastable region, there are at least two simultaneously rotating rings in every conformation. Conformations with three simultaneously rotating rings occupy 90 %. The same trend can be observed in Figure S2H and S2I. In can be concluded that three peripheral rings in each chain tend to rotate simultaneously, especially in the metastable region.
Figure S2. The three-dimensional structure of (A) one core, (B) one chain, and (C) the middle tier with three aromatic rings attached on a benzene ring. (D) The simultaneous rotation in a synchronous manner adopted by three peripheral rings within the middle tier. (E) Evolution of the percentage of conformations with 3-(red), 2-(green), and 0-(blue) simultaneously rotating peripheral ring(s). (F) The simultaneous rotation in an alternative manner adopted by three peripheral rings within one chain. The evolution of the percentage of conformations with 3-(red), 2-(green), and 0-(blue) simultaneously rotating peripheral ring(s) in (G) the chain1, (H) the chain2, and (I) the chain3.
Cartesian coordinates (pdb format)

The coordinates of one representative configuration for the metastable state of the main molecule, 3T.

(For clarity, the coordinates of solvent molecules have been omitted.)

```
ATOM    1  C1   TWT T   1       1.530   0.266  -0.203  0.00  0.00      TWT
ATOM    2  C2   TWT T   1       0.892 -1.003  -0.039  0.00  0.00      TWT
ATOM    3  C3   TWT T   1      -0.542  -1.005  -0.009  0.00  0.00      TWT
ATOM    4  C4   TWT T   1      -1.251   0.199   0.006  0.00  0.00      TWT
ATOM    5  C5   TWT T   1      -0.589   1.461   0.030  0.00  0.00      TWT
ATOM    6  C6   TWT T   1       0.795   1.482  -0.177  0.00  0.00      TWT
ATOM    7  C7   TWT T   1       2.980   0.300  -0.180  0.00  0.00      TWT
ATOM    8  C8   TWT T   1       4.191   0.165   0.047  0.00  0.00      TWT
ATOM    9  C9   TWT T   1       5.565   0.064   0.249  0.00  0.00      TWT
ATOM   10  C10 TWT T   1       6.211  -0.903  -0.611  0.00  0.00      TWT
ATOM   11  C11 TWT T   1       7.641  -0.849  -0.856  0.00  0.00      TWT
ATOM   12  C12 TWT T   1       8.415   0.094  -0.182  0.00  0.00      TWT
ATOM   13  C13 TWT T   1       7.745   0.994   0.644  0.00  0.00      TWT
ATOM   14  C14 TWT T   1       6.382   0.893   0.957  0.00  0.00      TWT
ATOM   15  C15 TWT T   1      -1.272   2.704   0.144  0.00  0.00      TWT
ATOM   16  C16 TWT T   1      -1.118 -2.346   0.175  0.00  0.00      TWT
ATOM   17  C17 TWT T   1      -1.943  3.756   0.138  0.00  0.00      TWT
ATOM   18  C18 TWT T   1      -1.600 -3.444   0.195  0.00  0.00      TWT
ATOM   19  C19 TWT T   1      -2.716  4.992   0.161  0.00  0.00      TWT
ATOM   20  C20 TWT T   1      -2.404 -4.691   0.159  0.00  0.00      TWT
ATOM   21  C21 TWT T   1      -2.728  5.887  -0.981  0.00  0.00      TWT
ATOM   22  C22 TWT T   1      -3.453  7.049  -0.872  0.00  0.00      TWT
ATOM   23  C23 TWT T   1      -4.289  7.336   0.253  0.00  0.00      TWT
ATOM   24  C24 TWT T   1      -4.441  6.379   1.210  0.00  0.00      TWT
ATOM   25  C25 TWT T   1      -3.648  5.155   1.209  0.00  0.00      TWT
ATOM   26  C26 TWT T   1      -3.573 -4.741  -0.659  0.00  0.00      TWT
ATOM   27  C27 TWT T   1      -4.389 -5.872  -0.652  0.00  0.00      TWT
ATOM   28  C28 TWT T   1      -4.115 -6.962   0.133  0.00  0.00      TWT
ATOM   29  C29 TWT T   1      -3.027 -6.928  1.041  0.00  0.00      TWT
ATOM   30  C30 TWT T   1      -2.143 -5.804  1.064  0.00  0.00      TWT
ATOM   31  C31 TWT T   1       1.967  0.947   3.901  0.00  0.00      TWT
ATOM   32  C32 TWT T   1       1.233 -0.226   3.838  0.00  0.00      TWT
ATOM   33  C33 TWT T   1      -0.125 -0.159   4.074  0.00  0.00      TWT
ATOM   34  C34 TWT T   1      -0.825  1.084   4.196  0.00  0.00      TWT
ATOM   35  C35 TWT T   1      -0.057  2.259   4.101  0.00  0.00      TWT
ATOM   36  C36 TWT T   1       1.330  2.187   3.866  0.00  0.00      TWT
ATOM   37  C37 TWT T   1       3.360  0.694   4.186  0.00  0.00      TWT
ATOM   38  C38 TWT T   1       4.547  0.558   4.422  0.00  0.00      TWT
ATOM   39  C39 TWT T   1       5.890  0.652   4.632  0.00  0.00      TWT
ATOM   40  C40 TWT T   1       6.655  1.655   3.976  0.00  0.00      TWT
ATOM   41  C41 TWT T   1       8.048  1.780   4.296  0.00  0.00      TWT
ATOM   42  C42 TWT T   1       8.602  0.897   5.241  0.00  0.00      TWT
ATOM   43  C43 TWT T   1       7.807 -0.113   5.918  0.00  0.00      TWT
ATOM   44  C44 TWT T   1       6.529 -0.353   5.442  0.00  0.00      TWT
```
<table>
<thead>
<tr>
<th>ATOM</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>Type</th>
<th>TWT</th>
</tr>
</thead>
<tbody>
<tr>
<td>96</td>
<td>-4.518</td>
<td>-4.724</td>
<td>-3.890</td>
<td></td>
<td>TWT</td>
</tr>
<tr>
<td>97</td>
<td>5.393</td>
<td>-1.756</td>
<td>-1.549</td>
<td></td>
<td>TWT</td>
</tr>
<tr>
<td>98</td>
<td>4.758</td>
<td>-0.949</td>
<td>-2.645</td>
<td></td>
<td>TWT</td>
</tr>
<tr>
<td>99</td>
<td>-2.188</td>
<td>6.330</td>
<td>-3.421</td>
<td></td>
<td>TWT</td>
</tr>
<tr>
<td>100</td>
<td>-3.880</td>
<td>-3.634</td>
<td>-1.635</td>
<td></td>
<td>TWT</td>
</tr>
<tr>
<td>101</td>
<td>-4.837</td>
<td>-3.942</td>
<td>-2.728</td>
<td></td>
<td>TWT</td>
</tr>
<tr>
<td>102</td>
<td>-1.899</td>
<td>5.550</td>
<td>-2.211</td>
<td></td>
<td>TWT</td>
</tr>
<tr>
<td>103</td>
<td>1.442</td>
<td>-1.932</td>
<td>-0.061</td>
<td></td>
<td>TWT</td>
</tr>
<tr>
<td>104</td>
<td>-2.321</td>
<td>0.169</td>
<td>0.149</td>
<td></td>
<td>TWT</td>
</tr>
<tr>
<td>105</td>
<td>1.415</td>
<td>2.333</td>
<td>-0.418</td>
<td></td>
<td>TWT</td>
</tr>
<tr>
<td>106</td>
<td>8.120</td>
<td>-1.709</td>
<td>-1.300</td>
<td></td>
<td>TWT</td>
</tr>
<tr>
<td>107</td>
<td>9.495</td>
<td>0.067</td>
<td>-0.211</td>
<td></td>
<td>TWT</td>
</tr>
<tr>
<td>108</td>
<td>8.441</td>
<td>1.600</td>
<td>1.206</td>
<td></td>
<td>TWT</td>
</tr>
<tr>
<td>109</td>
<td>-3.337</td>
<td>7.858</td>
<td>-1.578</td>
<td></td>
<td>TWT</td>
</tr>
<tr>
<td>110</td>
<td>-4.929</td>
<td>8.206</td>
<td>0.249</td>
<td></td>
<td>TWT</td>
</tr>
<tr>
<td>111</td>
<td>-5.071</td>
<td>6.628</td>
<td>2.051</td>
<td></td>
<td>TWT</td>
</tr>
<tr>
<td>112</td>
<td>-5.205</td>
<td>-6.096</td>
<td>1.323</td>
<td></td>
<td>TWT</td>
</tr>
<tr>
<td>113</td>
<td>-4.810</td>
<td>-7.787</td>
<td>0.179</td>
<td></td>
<td>TWT</td>
</tr>
<tr>
<td>114</td>
<td>-2.825</td>
<td>-7.826</td>
<td>1.606</td>
<td></td>
<td>TWT</td>
</tr>
<tr>
<td>115</td>
<td>1.748</td>
<td>-1.170</td>
<td>3.734</td>
<td></td>
<td>TWT</td>
</tr>
<tr>
<td>116</td>
<td>1.891</td>
<td>1.088</td>
<td>4.366</td>
<td></td>
<td>TWT</td>
</tr>
<tr>
<td>117</td>
<td>1.899</td>
<td>3.103</td>
<td>3.932</td>
<td></td>
<td>TWT</td>
</tr>
<tr>
<td>118</td>
<td>8.716</td>
<td>2.415</td>
<td>3.734</td>
<td></td>
<td>TWT</td>
</tr>
<tr>
<td>119</td>
<td>9.623</td>
<td>1.143</td>
<td>5.491</td>
<td></td>
<td>TWT</td>
</tr>
<tr>
<td>120</td>
<td>8.238</td>
<td>-0.703</td>
<td>6.713</td>
<td></td>
<td>TWT</td>
</tr>
<tr>
<td>121</td>
<td>5.920</td>
<td>-1.082</td>
<td>5.955</td>
<td></td>
<td>TWT</td>
</tr>
<tr>
<td>122</td>
<td>-5.115</td>
<td>7.172</td>
<td>4.345</td>
<td></td>
<td>TWT</td>
</tr>
<tr>
<td>123</td>
<td>-3.705</td>
<td>9.313</td>
<td>4.796</td>
<td></td>
<td>TWT</td>
</tr>
<tr>
<td>124</td>
<td>-1.356</td>
<td>9.055</td>
<td>5.200</td>
<td></td>
<td>TWT</td>
</tr>
<tr>
<td>125</td>
<td>-0.165</td>
<td>6.893</td>
<td>4.927</td>
<td></td>
<td>TWT</td>
</tr>
<tr>
<td>126</td>
<td>-2.763</td>
<td>-6.749</td>
<td>3.890</td>
<td></td>
<td>TWT</td>
</tr>
<tr>
<td>127</td>
<td>-4.643</td>
<td>-6.421</td>
<td>5.698</td>
<td></td>
<td>TWT</td>
</tr>
<tr>
<td>128</td>
<td>-4.649</td>
<td>-4.369</td>
<td>6.951</td>
<td></td>
<td>TWT</td>
</tr>
<tr>
<td>129</td>
<td>-3.207</td>
<td>-2.443</td>
<td>6.307</td>
<td></td>
<td>TWT</td>
</tr>
<tr>
<td>130</td>
<td>4.730</td>
<td>1.411</td>
<td>2.120</td>
<td></td>
<td>TWT</td>
</tr>
<tr>
<td>131</td>
<td>5.211</td>
<td>2.692</td>
<td>1.151</td>
<td></td>
<td>TWT</td>
</tr>
<tr>
<td>132</td>
<td>-0.851</td>
<td>-7.103</td>
<td>2.366</td>
<td></td>
<td>TWT</td>
</tr>
<tr>
<td>133</td>
<td>-0.078</td>
<td>-5.823</td>
<td>1.443</td>
<td></td>
<td>TWT</td>
</tr>
<tr>
<td>134</td>
<td>-2.720</td>
<td>3.807</td>
<td>2.631</td>
<td></td>
<td>TWT</td>
</tr>
<tr>
<td>135</td>
<td>-4.244</td>
<td>3.372</td>
<td>2.077</td>
<td></td>
<td>TWT</td>
</tr>
<tr>
<td>136</td>
<td>0.686</td>
<td>-1.653</td>
<td>-4.322</td>
<td></td>
<td>TWT</td>
</tr>
<tr>
<td>137</td>
<td>-3.284</td>
<td>0.186</td>
<td>4.112</td>
<td></td>
<td>TWT</td>
</tr>
<tr>
<td>138</td>
<td>0.120</td>
<td>2.598</td>
<td>4.488</td>
<td></td>
<td>TWT</td>
</tr>
<tr>
<td>139</td>
<td>-4.915</td>
<td>4.000</td>
<td>6.391</td>
<td></td>
<td>TWT</td>
</tr>
<tr>
<td>140</td>
<td>-6.074</td>
<td>6.094</td>
<td>6.920</td>
<td></td>
<td>TWT</td>
</tr>
<tr>
<td>141</td>
<td>-5.118</td>
<td>8.216</td>
<td>6.143</td>
<td></td>
<td>TWT</td>
</tr>
<tr>
<td>142</td>
<td>-3.570</td>
<td>8.264</td>
<td>4.371</td>
<td></td>
<td>TWT</td>
</tr>
<tr>
<td>143</td>
<td>4.724</td>
<td>1.668</td>
<td>6.494</td>
<td></td>
<td>TWT</td>
</tr>
<tr>
<td>144</td>
<td>6.998</td>
<td>1.151</td>
<td>-7.021</td>
<td></td>
<td>TWT</td>
</tr>
<tr>
<td>145</td>
<td>8.348</td>
<td>-0.304</td>
<td>5.573</td>
<td></td>
<td>TWT</td>
</tr>
<tr>
<td>146</td>
<td>7.348</td>
<td>-1.391</td>
<td>3.580</td>
<td></td>
<td>TWT</td>
</tr>
<tr>
<td>ATOM</td>
<td>147 H147 TWT T</td>
<td>1</td>
<td>-2.646 -4.914 -6.743 0.00 0.00</td>
<td>TWT</td>
<td></td>
</tr>
<tr>
<td>ATOM</td>
<td>148 H148 TWT T</td>
<td>1</td>
<td>-4.173 -6.741 -7.219 0.00 0.00</td>
<td>TWT</td>
<td></td>
</tr>
<tr>
<td>ATOM</td>
<td>149 H149 TWT T</td>
<td>1</td>
<td>-5.936 -7.337 -5.549 0.00 0.00</td>
<td>TWT</td>
<td></td>
</tr>
<tr>
<td>ATOM</td>
<td>150 H150 TWT T</td>
<td>1</td>
<td>-6.164 -6.132 -3.553 0.00 0.00</td>
<td>TWT</td>
<td></td>
</tr>
<tr>
<td>ATOM</td>
<td>151 H151 TWT T</td>
<td>1</td>
<td>4.733 -2.494 -1.045 0.00 0.00</td>
<td>TWT</td>
<td></td>
</tr>
<tr>
<td>ATOM</td>
<td>152 H152 TWT T</td>
<td>1</td>
<td>6.010 -2.450 -2.160 0.00 0.00</td>
<td>TWT</td>
<td></td>
</tr>
<tr>
<td>ATOM</td>
<td>153 H153 TWT T</td>
<td>1</td>
<td>-1.749 7.249 -3.460 0.00 0.00</td>
<td>TWT</td>
<td></td>
</tr>
<tr>
<td>ATOM</td>
<td>154 H154 TWT T</td>
<td>1</td>
<td>4.733 -2.975 -0.936 0.00 0.00</td>
<td>TWT</td>
<td></td>
</tr>
<tr>
<td>ATOM</td>
<td>155 H155 TWT T</td>
<td>1</td>
<td>-3.013 -3.025 -1.971 0.00 0.00</td>
<td>TWT</td>
<td></td>
</tr>
<tr>
<td>ATOM</td>
<td>156 H156 TWT T</td>
<td>1</td>
<td>-0.865 5.798 -1.891 0.00 0.00</td>
<td>TWT</td>
<td></td>
</tr>
<tr>
<td>ATOM</td>
<td>157 H157 TWT T</td>
<td>1</td>
<td>-1.951 4.460 -2.424 0.00 0.00</td>
<td>TWT</td>
<td></td>
</tr>
<tr>
<td>ATOM</td>
<td>158 H158 TWT T</td>
<td>1</td>
<td>-5.799 -4.018 -2.401 0.00 0.00</td>
<td>TWT</td>
<td></td>
</tr>
<tr>
<td>ATOM</td>
<td>159 H159 TWT T</td>
<td>1</td>
<td>3.928 -0.423 -2.376 0.00 0.00</td>
<td>TWT</td>
<td></td>
</tr>
<tr>
<td>ATOM</td>
<td>160 H160 TWT T</td>
<td>1</td>
<td>-5.150 5.061 3.623 0.00 0.00</td>
<td>TWT</td>
<td></td>
</tr>
<tr>
<td>ATOM</td>
<td>161 H161 TWT T</td>
<td>1</td>
<td>-0.186 -4.435 3.261 0.00 0.00</td>
<td>TWT</td>
<td></td>
</tr>
<tr>
<td>ATOM</td>
<td>162 H162 TWT T</td>
<td>1</td>
<td>7.136 3.094 2.648 0.00 0.00</td>
<td>TWT</td>
<td></td>
</tr>
</tbody>
</table>