Electronic Supplementary Information (ESI)

Electronic and Thermoelectric Properties of Zn and Se Double Substituted Tetrahedrite

Sahil Tippireddya, Raju Chettyb, Krushna Kumari Rautb, Mit H. Naikd, Prashanta K. Mukharjeee, Manish Jaind, R. Nathc, Krzysztof Wojciechowskib, Ramesh Chandra Mallika

aThermoelectric Materials and Devices Laboratory, Department of Physics, Indian Institute of Science, Bangalore

bFaculty of Materials Science and Ceramics, AGH University of Science and Technology, Cracow, Poland

cIndian Institute of Science Education and Research, Thiruvananthapuram, India

dDepartment of Physics, Indian Institute of Science, Bangalore

* Corresponding author Email id: rcmallik@iisc.ac.in

Figure S1: Refined XRD pattern for Cu\textsubscript{11}Zn\textsubscript{1}Sb\textsubscript{4}S\textsubscript{12.75}Se\textsubscript{0.25} done using Rietveld analysis.
Figure S2: Refined XRD pattern for Cu$_{11}$Zn$_{1}$Sb$_{4}$S$_{12.5}$Se$_{0.5}$ done using Rietveld analysis.

Figure S3: Refined XRD pattern for Cu$_{11}$Zn$_{1}$Sb$_{4}$S$_{12.25}$Se$_{0.75}$ done using Rietveld analysis.
Figure S4: Refined XRD pattern for Cu$_{11}$Zn$_1$Sb$_4$S$_{12}$Se$_1$ done using Rietveld analysis.

Figure S5: Refined XRD pattern for Cu$_{11}$Zn$_1$Sb$_4$S$_{11}$Se$_2$ done using Rietveld analysis.
Figure S6: X-ray photoelectron spectroscopy (XPS) spectrum of Cu in Cu$_{11}$Zn$_1$Sb$_4$S$_{12.5}$Se$_{0.5}$

Figure S7: X-ray photoelectron spectroscopy (XPS) spectrum of Sb in Cu$_{11}$Zn$_1$Sb$_4$S$_{12.5}$Se$_{0.5}$
Figure S8: X-ray photoelectron spectroscopy (XPS) spectrum of S in Cu$_{11}$Zn$_4$Sb$_4$S$_{12.5}$Se$_{0.5}$
Figure S9: Bandstructure of pristine compound Cu$_{12}$Sb$_4$S$_{13}$

Figure S10: Projected density of states (PDOS) of the pristine compound Cu$_{12}$Sb$_4$S$_{13}$
Figure S11: Bandstructure of Zn only substituted compound Cu_{11}Zn_{1}Sb_{4}S_{13}

Figure S12: Projected density of states (PDOS) of the Zn only substituted compound

Cu_{11}Zn_{1}Sb_{4}S_{13}
Table S1: XPS peak assignment corresponding to the oxidation states of individual elements.

<table>
<thead>
<tr>
<th>Element</th>
<th>Peak</th>
<th>B.E(eV)(^a)</th>
<th>Oxidation state</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu</td>
<td>2p(_{3/2})</td>
<td>931.6 eV</td>
<td>+1</td>
</tr>
<tr>
<td></td>
<td>2p(_{3/2})</td>
<td>941.7 eV</td>
<td>+2</td>
</tr>
<tr>
<td></td>
<td>2p(_{1/2})</td>
<td>951.8 eV</td>
<td>+1</td>
</tr>
<tr>
<td></td>
<td>2p(_{1/2})</td>
<td>962.3 eV</td>
<td>+2</td>
</tr>
<tr>
<td>Sb</td>
<td>3d(_{5/2})</td>
<td>529.3 eV</td>
<td>+3</td>
</tr>
<tr>
<td></td>
<td>3d(_{3/2})</td>
<td>538.9 eV</td>
<td>+3</td>
</tr>
<tr>
<td>S</td>
<td>2p(_{3/2})</td>
<td>160.2 eV</td>
<td>-2</td>
</tr>
<tr>
<td></td>
<td>2p(_{3/2})</td>
<td>161.6 eV</td>
<td>-2</td>
</tr>
</tbody>
</table>

\(^a\) The binding energy of the XPS peaks are indexed from the NIST database.
For comparison of the Zn (only) and Se (only) substituted samples, Figures S14 – S18 show the transport properties of Cu$_{11}$Zn$_1$Sb$_4$S$_{13}$ (ref: Tippireddy et al., J. Phys. Chem. C., 122, 8735 - 8749) and Cu$_{12}$Sb$_4$S$_{12}$Se$_1$ (The data reprinted with permission from Lu et al., Chem. Mater, 2016, 28, 1781-1786. Copyright (2016) American Chemical Society).
Figure S16

Figure S17
Figure S18