Electronic Supplementary Information

A Theoretical study on lidocaine solubility in deep eutectic solvents

Alberto Gutiérrez,a Mert Atilhanb,c and Santiago Aparicio*a

a Department of Chemistry, University of Burgos, 09001 Burgos, Spain
b Department of Chemical Engineering, Texas A&M University at Qatar, Doha, Qatar
c Gas and Fuels Research Center, Texas A&M University, College Station, TX, USA

*Corresponding authors: mert.atilhan@tamu.edu (M. A.) and sapar@ubu.es
The general form of the applied force field is:

\[E = \sum_{bonds} k_b (r - r_{eq})^2 + \sum_{angles} k_\theta (\theta - \theta_{eq})^2 + E_{tor} \]

\[+ \sum_i \sum_j \left\{ 4\varepsilon_{ij} \left(\frac{\sigma_{ij}}{r_{ij}} \right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}} \right)^6 \right\} + \frac{q_i q_j e^2}{4\pi\varepsilon_0 r_{ij}} \]

Graphene was maintained as rigid along the simulations, thus dihedrals \(E_{tor} \) were null for all the molecules.

Improper dihedrals were described according to:

\[E_{improper} = k_{\phi}(\phi-\phi_0)^2 \]

Table S1 Force field parameterization used for MD simulations

<table>
<thead>
<tr>
<th># Atoms</th>
<th>(q)</th>
<th>(\sigma_{ii}) / Å</th>
<th>(\varepsilon_{ii}) / kJ mol(^{-1})</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.27770</td>
<td>3.1000</td>
<td>0.8370</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>-0.40920</td>
<td>3.4500</td>
<td>0.3350</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>-0.41500</td>
<td>3.4500</td>
<td>0.3350</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>-0.54830</td>
<td>3.4500</td>
<td>0.3350</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>0.21190</td>
<td>2.2100</td>
<td>0.0920</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>0.18860</td>
<td>2.2100</td>
<td>0.0920</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>0.16780</td>
<td>2.2100</td>
<td>0.0920</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>0.19770</td>
<td>2.2100</td>
<td>0.0920</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>0.18540</td>
<td>2.2100</td>
<td>0.0920</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>0.23740</td>
<td>2.2100</td>
<td>0.0920</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>0.16670</td>
<td>2.2100</td>
<td>0.0920</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>0.21050</td>
<td>2.2100</td>
<td>0.0920</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>0.20910</td>
<td>2.2100</td>
<td>0.0920</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>-0.36350</td>
<td>3.6400</td>
<td>0.2300</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>0.37580</td>
<td>3.6400</td>
<td>0.2300</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>0.19220</td>
<td>2.2100</td>
<td>0.0920</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>0.14290</td>
<td>2.2100</td>
<td>0.0920</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>-0.00030</td>
<td>2.2100</td>
<td>0.0920</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>0.03390</td>
<td>2.2100</td>
<td>0.0920</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>-0.65920</td>
<td>3.1538</td>
<td>0.6370</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>0.40360</td>
<td>0.4000</td>
<td>0.1925</td>
<td>21</td>
<td></td>
</tr>
</tbody>
</table>
Bonds

<table>
<thead>
<tr>
<th>Atom Numbers</th>
<th>r_{eq}/Å</th>
<th>k_r/kJ mol$^{-1}$ Å$^{-2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>1.5100 1092.80</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>1.5100 1092.80</td>
</tr>
<tr>
<td>1</td>
<td>14</td>
<td>1.5320 1092.80</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>1.5100 1092.80</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>1.0890 1422.56</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>1.0890 1422.56</td>
</tr>
<tr>
<td>2</td>
<td>11</td>
<td>1.0890 1422.56</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>1.0890 1422.56</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>1.0890 1422.56</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>1.0890 1422.56</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>1.0890 1422.56</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td>1.0890 1422.56</td>
</tr>
<tr>
<td>4</td>
<td>13</td>
<td>1.0890 1422.56</td>
</tr>
<tr>
<td>14</td>
<td>15</td>
<td>1.5200 931.60</td>
</tr>
<tr>
<td>14</td>
<td>16</td>
<td>1.0910 1422.56</td>
</tr>
<tr>
<td>14</td>
<td>17</td>
<td>1.0910 1422.56</td>
</tr>
<tr>
<td>15</td>
<td>18</td>
<td>1.0960 1422.56</td>
</tr>
<tr>
<td>15</td>
<td>19</td>
<td>1.0960 1422.56</td>
</tr>
<tr>
<td>15</td>
<td>20</td>
<td>1.4180 1792.00</td>
</tr>
<tr>
<td>20</td>
<td>21</td>
<td>0.9650 2313.80</td>
</tr>
</tbody>
</table>

Angles

<table>
<thead>
<tr>
<th>Atom Numbers</th>
<th>θ_{eq}/deg</th>
<th>k_θ/kJ mol$^{-1}$ rad$^{-2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>108.9000 209.30</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>110.7000 209.30</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>108.9000 209.30</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>110.7000 209.30</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>108.9000 209.30</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>110.7000 209.30</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>109.0000 201.00</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>109.0000 201.00</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>109.0000 201.00</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>109.3000 148.60</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>109.3000 148.60</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>109.3000 148.60</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>109.0000 201.00</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>109.0000 201.00</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>109.0000 201.00</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>109.3000 148.60</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>109.3000 148.60</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>109.3000 148.60</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>109.0000 201.00</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>109.0000 201.00</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>109.0000 201.00</td>
</tr>
<tr>
<td>13</td>
<td>4</td>
<td>109.3000 148.60</td>
</tr>
<tr>
<td>13</td>
<td>4</td>
<td>109.3000 148.60</td>
</tr>
<tr>
<td>12</td>
<td>4</td>
<td>109.3000 148.60</td>
</tr>
<tr>
<td>1</td>
<td>14</td>
<td>110.6000 334.90</td>
</tr>
<tr>
<td>1</td>
<td>14</td>
<td>110.6000 215.60</td>
</tr>
<tr>
<td>1</td>
<td>14</td>
<td>110.6000 215.60</td>
</tr>
<tr>
<td>15</td>
<td>14</td>
<td>110.6000 110.90</td>
</tr>
<tr>
<td>15</td>
<td>14</td>
<td>110.6000 110.90</td>
</tr>
<tr>
<td>16</td>
<td>14</td>
<td>108.4000 148.60</td>
</tr>
</tbody>
</table>

S3
<table>
<thead>
<tr>
<th>Atom Numbers</th>
<th>δ / deg</th>
<th>kₜ / kJ mol⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>14</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>14</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>14</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>14</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>14</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>14</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>1</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>1</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>16</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>16</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>16</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>17</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>17</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>17</td>
<td>14</td>
<td>15</td>
</tr>
</tbody>
</table>
LA in ChCl:LA 1:1

<table>
<thead>
<tr>
<th># Atoms</th>
<th>(q)</th>
<th>(\sigma_{ii} / \text{Å})</th>
<th>(\epsilon_{ii} / \text{kJ mol}^{-1})</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.64260</td>
<td>3.15378</td>
<td>0.636386</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>-0.57590</td>
<td>3.02905</td>
<td>0.502080</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>0.52070</td>
<td>3.87541</td>
<td>0.230120</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>-0.48520</td>
<td>3.87541</td>
<td>0.230120</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>0.55010</td>
<td>3.56359</td>
<td>0.460240</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>-0.00620</td>
<td>2.35197</td>
<td>0.092048</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>0.13920</td>
<td>2.35197</td>
<td>0.092048</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>0.12520</td>
<td>2.35197</td>
<td>0.092048</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>0.13560</td>
<td>2.35197</td>
<td>0.092048</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>0.34980</td>
<td>0.40001</td>
<td>0.192464</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>0.47630</td>
<td>0.40001</td>
<td>0.192464</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th># Bonds</th>
<th>Atom Numbers</th>
<th>(r_{eq} / \text{Å})</th>
<th>(k_r / \text{kJ mol}^{-1} \text{Å}^{-2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 4</td>
<td>1.418</td>
<td>1519.6875</td>
<td></td>
</tr>
<tr>
<td>1 11</td>
<td>0.972</td>
<td>2346.8265</td>
<td></td>
</tr>
<tr>
<td>2 6</td>
<td>1.355</td>
<td>1746.7195</td>
<td></td>
</tr>
<tr>
<td>2 12</td>
<td>0.981</td>
<td>2229.093</td>
<td></td>
</tr>
<tr>
<td>3 6</td>
<td>1.222</td>
<td>3899.333</td>
<td></td>
</tr>
<tr>
<td>4 5</td>
<td>1.508</td>
<td>1282.1115</td>
<td></td>
</tr>
<tr>
<td>4 6</td>
<td>1.492</td>
<td>1261.639</td>
<td></td>
</tr>
<tr>
<td>4 7</td>
<td>1.093</td>
<td>1435.0745</td>
<td></td>
</tr>
<tr>
<td>5 8</td>
<td>1.093</td>
<td>1435.0745</td>
<td></td>
</tr>
<tr>
<td>5 9</td>
<td>1.093</td>
<td>1435.0745</td>
<td></td>
</tr>
<tr>
<td>5 10</td>
<td>1.093</td>
<td>1435.0745</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th># Angles</th>
<th>Atom Numbers</th>
<th>(\theta_{eq} / \text{deg})</th>
<th>(k_\theta / \text{kJ mol}^{-1} \text{rad}^{-2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 1 11</td>
<td>106.503</td>
<td>477.55</td>
<td></td>
</tr>
<tr>
<td>6 2 12</td>
<td>111.948</td>
<td>351.09</td>
<td></td>
</tr>
<tr>
<td>1 4 5</td>
<td>108.133</td>
<td>597.39</td>
<td></td>
</tr>
<tr>
<td>1 4 6</td>
<td>104.112</td>
<td>317.97</td>
<td></td>
</tr>
<tr>
<td>1 4 7</td>
<td>108.577</td>
<td>470.32</td>
<td></td>
</tr>
<tr>
<td>5 4 6</td>
<td>107.517</td>
<td>467.91</td>
<td></td>
</tr>
<tr>
<td>5 4 7</td>
<td>110.549</td>
<td>383</td>
<td></td>
</tr>
<tr>
<td>Atom Numbers</td>
<td>δ / deg</td>
<td>kφ / kJ mol⁻¹</td>
<td>m</td>
</tr>
<tr>
<td>--------------</td>
<td>---------</td>
<td>----------------</td>
<td>---</td>
</tr>
<tr>
<td>1 4 5 8</td>
<td>0</td>
<td>-1.3682</td>
<td>1</td>
</tr>
<tr>
<td>1 4 5 8</td>
<td>180</td>
<td>2.2426</td>
<td>2</td>
</tr>
<tr>
<td>1 4 5 9</td>
<td>0</td>
<td>-1.3682</td>
<td>1</td>
</tr>
<tr>
<td>1 4 5 9</td>
<td>180</td>
<td>2.2426</td>
<td>2</td>
</tr>
<tr>
<td>1 4 5 10</td>
<td>0</td>
<td>-1.3682</td>
<td>1</td>
</tr>
<tr>
<td>1 4 5 10</td>
<td>180</td>
<td>2.2426</td>
<td>2</td>
</tr>
<tr>
<td>1 4 5 10</td>
<td>0</td>
<td>0.5858</td>
<td>3</td>
</tr>
<tr>
<td>1 4 5 10</td>
<td>180</td>
<td>0.5858</td>
<td>3</td>
</tr>
<tr>
<td>1 4 6 2</td>
<td>0</td>
<td>0.9372</td>
<td>1</td>
</tr>
<tr>
<td>1 4 6 2</td>
<td>180</td>
<td>1.364</td>
<td>2</td>
</tr>
<tr>
<td>1 4 6 3</td>
<td>0</td>
<td>-0.8284</td>
<td>1</td>
</tr>
<tr>
<td>1 4 6 3</td>
<td>180</td>
<td>1.5272</td>
<td>2</td>
</tr>
<tr>
<td>2 6 4 5</td>
<td>0</td>
<td>-0.2469</td>
<td>1</td>
</tr>
<tr>
<td>2 6 4 5</td>
<td>180</td>
<td>-0.6987</td>
<td>2</td>
</tr>
<tr>
<td>2 6 4 5</td>
<td>0</td>
<td>0.4226</td>
<td>3</td>
</tr>
<tr>
<td>2 6 4 7</td>
<td>180</td>
<td>-1.3054</td>
<td>2</td>
</tr>
<tr>
<td>2 6 4 7</td>
<td>0</td>
<td>0.6904</td>
<td>3</td>
</tr>
<tr>
<td>3 6 2 12</td>
<td>0</td>
<td>3.4769</td>
<td>1</td>
</tr>
<tr>
<td>3 6 2 12</td>
<td>180</td>
<td>12.87</td>
<td>2</td>
</tr>
<tr>
<td>3 6 2 12</td>
<td>0</td>
<td>-0.1213</td>
<td>3</td>
</tr>
<tr>
<td>3 6 4 5</td>
<td>0</td>
<td>1.7238</td>
<td>1</td>
</tr>
<tr>
<td>3 6 4 5</td>
<td>180</td>
<td>0.2929</td>
<td>2</td>
</tr>
<tr>
<td>3 6 4 5</td>
<td>0</td>
<td>0.682</td>
<td>3</td>
</tr>
<tr>
<td>3 6 4 7</td>
<td>0</td>
<td>1.3807</td>
<td>1</td>
</tr>
<tr>
<td>3 6 4 7</td>
<td>180</td>
<td>-2.9455</td>
<td>2</td>
</tr>
<tr>
<td>3 6 4 7</td>
<td>0</td>
<td>0.6443</td>
<td>3</td>
</tr>
<tr>
<td>4 6 2 12</td>
<td>0</td>
<td>-2.4393</td>
<td>1</td>
</tr>
<tr>
<td>4 6 2 12</td>
<td>180</td>
<td>10.6232</td>
<td>2</td>
</tr>
<tr>
<td>4 6 2 12</td>
<td>0</td>
<td>-1.4422</td>
<td>3</td>
</tr>
<tr>
<td>5 4 1 11</td>
<td>180</td>
<td>0.5648</td>
<td>2</td>
</tr>
<tr>
<td>5 4 1 11</td>
<td>0</td>
<td>0.4937</td>
<td>3</td>
</tr>
<tr>
<td>6 4 1 11</td>
<td>0</td>
<td>-3.456</td>
<td>1</td>
</tr>
<tr>
<td>6 4 1 11</td>
<td>180</td>
<td>-3.4727</td>
<td>2</td>
</tr>
<tr>
<td>6 4 1 11</td>
<td>0</td>
<td>0.5899</td>
<td>3</td>
</tr>
<tr>
<td>6 4 5 8</td>
<td>0</td>
<td>-0.5356</td>
<td>1</td>
</tr>
<tr>
<td>6 4 5 8</td>
<td>180</td>
<td>0.1213</td>
<td>2</td>
</tr>
<tr>
<td>6 4 5 9</td>
<td>0</td>
<td>-0.5356</td>
<td>1</td>
</tr>
<tr>
<td>6 4 5 9</td>
<td>180</td>
<td>0.1213</td>
<td>2</td>
</tr>
<tr>
<td>6 4 5 10</td>
<td>0</td>
<td>-0.5356</td>
<td>1</td>
</tr>
</tbody>
</table>
Improper

<table>
<thead>
<tr>
<th>Atom Numbers</th>
<th>(\varphi_0) / deg</th>
<th>(k_\varphi) / kJ mol(^{-1}) rad(^{-2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 6 1 5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4 5 1 7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5 8 4 9</td>
<td>0</td>
<td>84.9101</td>
</tr>
<tr>
<td>5 8 4 10</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Bonds

<table>
<thead>
<tr>
<th>Atom Numbers</th>
<th>(r_{eq}) /Å</th>
<th>(k_/) / kJ mol(^{-1}) Å(^{-2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2</td>
<td>1.019</td>
<td>1954.183</td>
</tr>
<tr>
<td>1 3</td>
<td>1.019</td>
<td>1954.183</td>
</tr>
</tbody>
</table>
Angles

<table>
<thead>
<tr>
<th>Atom Numbers</th>
<th>θ<sub>eq</sub> / deg</th>
<th>k<sub>θ</sub> / kJ mol<sup>1</sup> rad<sup>2</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>2 1 3</td>
<td>105.998</td>
<td>358.32</td>
</tr>
<tr>
<td>2 1 4</td>
<td>109.062</td>
<td>459.49</td>
</tr>
<tr>
<td>3 1 4</td>
<td>109.062</td>
<td>459.49</td>
</tr>
<tr>
<td>1 4 5</td>
<td>110.297</td>
<td>393.25</td>
</tr>
<tr>
<td>1 4 6</td>
<td>110.297</td>
<td>393.25</td>
</tr>
<tr>
<td>1 4 7</td>
<td>108.290</td>
<td>467.91</td>
</tr>
<tr>
<td>5 4 6</td>
<td>108.836</td>
<td>310.74</td>
</tr>
<tr>
<td>5 4 7</td>
<td>110.549</td>
<td>383</td>
</tr>
<tr>
<td>6 4 7</td>
<td>110.549</td>
<td>383</td>
</tr>
<tr>
<td>4 7 8</td>
<td>110.549</td>
<td>383</td>
</tr>
<tr>
<td>4 7 9</td>
<td>110.549</td>
<td>383</td>
</tr>
<tr>
<td>4 7 10</td>
<td>107.517</td>
<td>467.91</td>
</tr>
<tr>
<td>8 7 9</td>
<td>108.836</td>
<td>310.74</td>
</tr>
<tr>
<td>8 7 10</td>
<td>108.385</td>
<td>391.44</td>
</tr>
<tr>
<td>9 7 10</td>
<td>108.385</td>
<td>391.44</td>
</tr>
<tr>
<td>7 10 11</td>
<td>109.716</td>
<td>628.1</td>
</tr>
<tr>
<td>7 10 13</td>
<td>124.410</td>
<td>564.87</td>
</tr>
<tr>
<td>11 10 13</td>
<td>124.425</td>
<td>695.55</td>
</tr>
<tr>
<td>10 11 12</td>
<td>111.948</td>
<td>351.09</td>
</tr>
</tbody>
</table>

Dihedrals

<table>
<thead>
<tr>
<th>Atom Numbers</th>
<th>δ / deg</th>
<th>k<sub>δ</sub> / kJ mol<sup>1</sup></th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 4 7 8</td>
<td>0</td>
<td>-1.5564</td>
<td>1</td>
</tr>
<tr>
<td>1 4 7 8</td>
<td>180</td>
<td>-2.5815</td>
<td>2</td>
</tr>
<tr>
<td>1 4 7 9</td>
<td>0</td>
<td>0.7071</td>
<td>3</td>
</tr>
<tr>
<td>1 4 7 9</td>
<td>180</td>
<td>-1.5564</td>
<td>1</td>
</tr>
<tr>
<td>1 4 7 9</td>
<td>0</td>
<td>0.7071</td>
<td>3</td>
</tr>
<tr>
<td>1 4 7 10</td>
<td>0</td>
<td>0.6276</td>
<td>3</td>
</tr>
<tr>
<td>2 1 4 5</td>
<td>0</td>
<td>-0.318</td>
<td>1</td>
</tr>
<tr>
<td>2 1 4 5</td>
<td>180</td>
<td>-0.9205</td>
<td>2</td>
</tr>
<tr>
<td>2 1 4 5</td>
<td>0</td>
<td>0.7448</td>
<td>3</td>
</tr>
<tr>
<td>2 1 4 6</td>
<td>0</td>
<td>-0.318</td>
<td>1</td>
</tr>
<tr>
<td>2 1 4 6</td>
<td>180</td>
<td>-0.9205</td>
<td>2</td>
</tr>
<tr>
<td>2 1 4 6</td>
<td>0</td>
<td>0.7448</td>
<td>3</td>
</tr>
<tr>
<td>2 1 4 7</td>
<td>0</td>
<td>-0.8954</td>
<td>1</td>
</tr>
<tr>
<td>2 1 4 7</td>
<td>180</td>
<td>0.6778</td>
<td>2</td>
</tr>
<tr>
<td>2 1 4 7</td>
<td>0</td>
<td>0.5858</td>
<td>3</td>
</tr>
<tr>
<td>3 1 4 5</td>
<td>0</td>
<td>-0.318</td>
<td>1</td>
</tr>
<tr>
<td>3 1 4 5</td>
<td>180</td>
<td>-0.9205</td>
<td>2</td>
</tr>
<tr>
<td>3 1 4 5</td>
<td>0</td>
<td>0.7448</td>
<td>3</td>
</tr>
<tr>
<td>3 1 4 6</td>
<td>0</td>
<td>-0.318</td>
<td>1</td>
</tr>
<tr>
<td>Atom Numbers</td>
<td>ϕ_0 / deg</td>
<td>k_ϕ / kJ mol$^{-1}$ rad$^{-2}$</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>----------------</td>
<td>----------------------------------</td>
<td></td>
</tr>
<tr>
<td>3 1 4 6 180</td>
<td>0.9205</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3 1 4 6 0</td>
<td>0.7448</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>3 1 4 7 0</td>
<td>0.8954</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3 1 4 7 180</td>
<td>0.6778</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3 1 4 7 0</td>
<td>0.5858</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4 7 10 11 0</td>
<td>0.2469</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4 7 10 11 180</td>
<td>0.6987</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>4 7 10 11 0</td>
<td>0.4226</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4 7 10 13 0</td>
<td>1.7238</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4 7 10 13 180</td>
<td>0.2929</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>4 7 10 13 0</td>
<td>0.6820</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5 4 7 8 0</td>
<td>0.5941</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5 4 7 8 180</td>
<td>-0.8954</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5 4 7 8 0</td>
<td>0.5858</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5 4 7 9 180</td>
<td>-0.8954</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>5 4 7 9 0</td>
<td>0.6569</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5 4 7 10 0</td>
<td>0.5356</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5 4 7 10 180</td>
<td>0.1213</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>6 4 7 8 0</td>
<td>0.5941</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>6 4 7 8 180</td>
<td>-0.8954</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>6 4 7 9 0</td>
<td>0.6569</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>6 4 7 9 180</td>
<td>-2.8995</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>6 4 7 10 0</td>
<td>0.5356</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>6 4 7 10 180</td>
<td>0.1213</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>7 10 11 12 0</td>
<td>2.4393</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>7 10 11 12 180</td>
<td>10.6232</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>7 10 11 12 0</td>
<td>-1.1422</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>8 7 10 11 180</td>
<td>-1.3054</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>8 7 10 11 0</td>
<td>0.6904</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>8 7 10 13 0</td>
<td>1.3807</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>8 7 10 13 180</td>
<td>-2.9455</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>8 7 10 13 0</td>
<td>0.6443</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>9 7 10 11 180</td>
<td>-1.3054</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>9 7 10 11 0</td>
<td>0.6904</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>9 7 10 13 0</td>
<td>1.3807</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>9 7 10 13 180</td>
<td>-2.9455</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>9 7 10 13 0</td>
<td>0.6443</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>12 11 10 13 0</td>
<td>3.4769</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>12 11 10 13 180</td>
<td>12.87</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>12 11 10 13 0</td>
<td>-0.1213</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Improper

<table>
<thead>
<tr>
<th>Atom Numbers</th>
<th>ϕ_0 / deg</th>
<th>k_ϕ / kJ mol$^{-1}$ rad$^{-2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 4 3 0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4 7 1 5 0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4 5 6 0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7 10 4 8 0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7 8 4 9 0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10 11 7 13 0</td>
<td>84.9101</td>
<td>1</td>
</tr>
</tbody>
</table>
LA in AL:LA 1:1

<table>
<thead>
<tr>
<th>q</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.74485</td>
<td>1</td>
</tr>
<tr>
<td>-0.68487</td>
<td>2</td>
</tr>
<tr>
<td>-0.60333</td>
<td>3</td>
</tr>
<tr>
<td>0.64553</td>
<td>4</td>
</tr>
<tr>
<td>-0.44528</td>
<td>5</td>
</tr>
<tr>
<td>0.48799</td>
<td>6</td>
</tr>
<tr>
<td>-0.03279</td>
<td>7</td>
</tr>
<tr>
<td>0.13211</td>
<td>8</td>
</tr>
<tr>
<td>0.10608</td>
<td>9</td>
</tr>
<tr>
<td>0.11828</td>
<td>10</td>
</tr>
<tr>
<td>0.41101</td>
<td>11</td>
</tr>
<tr>
<td>0.64384</td>
<td>12</td>
</tr>
</tbody>
</table>

The remaining force field parameters as for LA in ChCl:LA 1:1

LD

<table>
<thead>
<tr>
<th>#</th>
<th>Atoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>q</td>
<td>σ/Å</td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
</tr>
<tr>
<td>-0.1200</td>
<td>3.5490</td>
</tr>
<tr>
<td>-0.0400</td>
<td>3.5490</td>
</tr>
<tr>
<td>0.1800</td>
<td>3.5490</td>
</tr>
<tr>
<td>-0.0400</td>
<td>3.5490</td>
</tr>
<tr>
<td>-0.1200</td>
<td>3.5490</td>
</tr>
<tr>
<td>-0.0600</td>
<td>3.5490</td>
</tr>
<tr>
<td>-0.2000</td>
<td>3.6705</td>
</tr>
<tr>
<td>-0.2000</td>
<td>3.6705</td>
</tr>
<tr>
<td>-0.6100</td>
<td>3.2963</td>
</tr>
<tr>
<td>0.4800</td>
<td>3.5636</td>
</tr>
<tr>
<td>-0.0100</td>
<td>3.8754</td>
</tr>
<tr>
<td>-0.4800</td>
<td>3.2970</td>
</tr>
<tr>
<td>-0.0400</td>
<td>3.8754</td>
</tr>
<tr>
<td>-0.2500</td>
<td>3.6705</td>
</tr>
<tr>
<td>-0.0400</td>
<td>3.8754</td>
</tr>
<tr>
<td>-0.2500</td>
<td>3.6705</td>
</tr>
<tr>
<td>-0.4800</td>
<td>3.0290</td>
</tr>
</tbody>
</table>
Bonds

<table>
<thead>
<tr>
<th>Atom Numbers</th>
<th>(r_{eq}) /Å</th>
<th>(k) / kJ mol(^{-1}) Å(^{-2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.37500</td>
<td>1277.00</td>
</tr>
<tr>
<td>1</td>
<td>1.37500</td>
<td>1277.00</td>
</tr>
<tr>
<td>1</td>
<td>1.08000</td>
<td>1423.00</td>
</tr>
<tr>
<td>2</td>
<td>1.37500</td>
<td>1277.00</td>
</tr>
<tr>
<td>2</td>
<td>1.49000</td>
<td>963.00</td>
</tr>
<tr>
<td>3</td>
<td>1.37500</td>
<td>1277.00</td>
</tr>
<tr>
<td>3</td>
<td>1.36600</td>
<td>1507.00</td>
</tr>
<tr>
<td>4</td>
<td>1.37500</td>
<td>1277.00</td>
</tr>
<tr>
<td>4</td>
<td>1.49000</td>
<td>963.00</td>
</tr>
<tr>
<td>5</td>
<td>1.37500</td>
<td>1277.00</td>
</tr>
<tr>
<td>5</td>
<td>1.08000</td>
<td>1423.00</td>
</tr>
<tr>
<td>6</td>
<td>1.08000</td>
<td>1423.00</td>
</tr>
<tr>
<td>7</td>
<td>1.11100</td>
<td>1348.00</td>
</tr>
<tr>
<td>7</td>
<td>1.11100</td>
<td>1348.00</td>
</tr>
<tr>
<td>7</td>
<td>1.11100</td>
<td>1348.00</td>
</tr>
<tr>
<td>8</td>
<td>1.11100</td>
<td>1348.00</td>
</tr>
<tr>
<td>8</td>
<td>1.11100</td>
<td>1348.00</td>
</tr>
<tr>
<td>8</td>
<td>1.11100</td>
<td>1348.00</td>
</tr>
<tr>
<td>9</td>
<td>1.34500</td>
<td>1549.00</td>
</tr>
<tr>
<td>9</td>
<td>0.98000</td>
<td>1696.00</td>
</tr>
<tr>
<td>10</td>
<td>1.49000</td>
<td>1047.00</td>
</tr>
<tr>
<td>10</td>
<td>1.23000</td>
<td>2596.00</td>
</tr>
<tr>
<td>11</td>
<td>1.43000</td>
<td>1340.00</td>
</tr>
<tr>
<td>11</td>
<td>1.11100</td>
<td>1294.00</td>
</tr>
<tr>
<td>11</td>
<td>1.11100</td>
<td>1294.00</td>
</tr>
<tr>
<td>12</td>
<td>1.43000</td>
<td>1340.00</td>
</tr>
<tr>
<td>12</td>
<td>1.43000</td>
<td>1340.00</td>
</tr>
<tr>
<td>13</td>
<td>1.52800</td>
<td>944.00</td>
</tr>
<tr>
<td>13</td>
<td>1.11100</td>
<td>1294.00</td>
</tr>
<tr>
<td>13</td>
<td>1.11100</td>
<td>1294.00</td>
</tr>
<tr>
<td>Atom Numbers</td>
<td>θ_{eq}/ deg</td>
<td>k_0/ kJ mol$^{-1}$ rad$^{-2}$</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>2 1 6</td>
<td>120</td>
<td>167.5</td>
</tr>
<tr>
<td>2 1 19</td>
<td>120</td>
<td>125.6</td>
</tr>
<tr>
<td>6 1 19</td>
<td>120</td>
<td>125.6</td>
</tr>
<tr>
<td>1 2 3</td>
<td>120</td>
<td>167.5</td>
</tr>
<tr>
<td>1 2 7</td>
<td>122.3</td>
<td>191.8</td>
</tr>
<tr>
<td>3 2 7</td>
<td>122.3</td>
<td>191.8</td>
</tr>
<tr>
<td>2 3 4</td>
<td>120</td>
<td>167.5</td>
</tr>
<tr>
<td>2 3 9</td>
<td>119.5</td>
<td>209</td>
</tr>
<tr>
<td>4 3 9</td>
<td>119.5</td>
<td>209</td>
</tr>
<tr>
<td>3 4 5</td>
<td>120</td>
<td>167.5</td>
</tr>
<tr>
<td>3 4 8</td>
<td>122.3</td>
<td>191.8</td>
</tr>
<tr>
<td>5 4 8</td>
<td>122.3</td>
<td>191.8</td>
</tr>
<tr>
<td>4 5 6</td>
<td>120</td>
<td>167.5</td>
</tr>
<tr>
<td>4 5 20</td>
<td>120</td>
<td>125.6</td>
</tr>
<tr>
<td>6 5 20</td>
<td>120</td>
<td>125.6</td>
</tr>
<tr>
<td>1 6 5</td>
<td>120</td>
<td>167.5</td>
</tr>
<tr>
<td>1 6 21</td>
<td>120</td>
<td>125.6</td>
</tr>
<tr>
<td>5 6 21</td>
<td>120</td>
<td>125.6</td>
</tr>
<tr>
<td>2 7 22</td>
<td>107.5</td>
<td>206.4</td>
</tr>
<tr>
<td>2 7 23</td>
<td>107.5</td>
<td>206.4</td>
</tr>
<tr>
<td>2 7 24</td>
<td>107.5</td>
<td>206.4</td>
</tr>
<tr>
<td>22 7 23</td>
<td>108.4</td>
<td>148.6</td>
</tr>
<tr>
<td>22 7 24</td>
<td>108.4</td>
<td>148.6</td>
</tr>
<tr>
<td>23 7 24</td>
<td>108.4</td>
<td>148.6</td>
</tr>
<tr>
<td>4 8 25</td>
<td>107.5</td>
<td>206.4</td>
</tr>
<tr>
<td>4 8 26</td>
<td>107.5</td>
<td>206.4</td>
</tr>
<tr>
<td>4 8 27</td>
<td>107.5</td>
<td>206.4</td>
</tr>
<tr>
<td>25 8 26</td>
<td>108.4</td>
<td>148.6</td>
</tr>
<tr>
<td>25 8 27</td>
<td>108.4</td>
<td>148.6</td>
</tr>
<tr>
<td>26 8 27</td>
<td>108.4</td>
<td>148.6</td>
</tr>
<tr>
<td>3 9 10</td>
<td>120</td>
<td>209.35</td>
</tr>
<tr>
<td>3 9 18</td>
<td>111</td>
<td>209.3</td>
</tr>
<tr>
<td>10 9 18</td>
<td>111</td>
<td>209.3</td>
</tr>
<tr>
<td>9 10 11</td>
<td>116.5</td>
<td>335</td>
</tr>
<tr>
<td>9 10 17</td>
<td>122.5</td>
<td>335</td>
</tr>
<tr>
<td>11 10 17</td>
<td>121</td>
<td>335</td>
</tr>
<tr>
<td>10 11 12</td>
<td>107</td>
<td>209.4</td>
</tr>
<tr>
<td>10 11 28</td>
<td>109.5</td>
<td>138.1</td>
</tr>
<tr>
<td>10 11 29</td>
<td>109.5</td>
<td>138.1</td>
</tr>
<tr>
<td>12 11 28</td>
<td>109.5</td>
<td>215.6</td>
</tr>
<tr>
<td>12 11 29</td>
<td>109.5</td>
<td>215.6</td>
</tr>
<tr>
<td>28 11 29</td>
<td>109</td>
<td>148.6</td>
</tr>
<tr>
<td>11 12 13</td>
<td>111</td>
<td>418.7</td>
</tr>
<tr>
<td>Atom Numbers</td>
<td>δ / deg</td>
<td>kₚ / kJ mol⁻¹</td>
</tr>
<tr>
<td>-------------</td>
<td>---------</td>
<td>---------------</td>
</tr>
<tr>
<td>6 1 2 3</td>
<td>180</td>
<td>13</td>
</tr>
<tr>
<td>6 1 2 7</td>
<td>180</td>
<td>13</td>
</tr>
<tr>
<td>19 1 2 3</td>
<td>180</td>
<td>17.6</td>
</tr>
<tr>
<td>19 1 2 7</td>
<td>180</td>
<td>17.6</td>
</tr>
<tr>
<td>2 1 6 5</td>
<td>180</td>
<td>13</td>
</tr>
<tr>
<td>2 1 6 21</td>
<td>180</td>
<td>17.6</td>
</tr>
<tr>
<td>19 1 6 5</td>
<td>180</td>
<td>17.6</td>
</tr>
<tr>
<td>19 1 6 21</td>
<td>180</td>
<td>10</td>
</tr>
<tr>
<td>1 2 3 4</td>
<td>180</td>
<td>13</td>
</tr>
<tr>
<td>1 2 3 9</td>
<td>180</td>
<td>13</td>
</tr>
<tr>
<td>7 2 3 4</td>
<td>180</td>
<td>13</td>
</tr>
<tr>
<td>7 2 3 9</td>
<td>180</td>
<td>13</td>
</tr>
<tr>
<td>1 2 7 22</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1 2 7 23</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1 2 7 24</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3 2 7 22</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3 2 7 23</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3 2 7 24</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2 3 4 5</td>
<td>180</td>
<td>13</td>
</tr>
<tr>
<td>2 3 4 8</td>
<td>180</td>
<td>13</td>
</tr>
<tr>
<td>9 3 4 5</td>
<td>180</td>
<td>13</td>
</tr>
<tr>
<td>9 3 4 8</td>
<td>180</td>
<td>13</td>
</tr>
<tr>
<td>2 3 9 10</td>
<td>0</td>
<td>3.3</td>
</tr>
<tr>
<td>2 3 9 18</td>
<td>180</td>
<td>4.2</td>
</tr>
<tr>
<td>4 3 9 10</td>
<td>0</td>
<td>3.3</td>
</tr>
<tr>
<td>4 3 9 18</td>
<td>180</td>
<td>4.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>20</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>20</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>18</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>18</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>17</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>17</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>17</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>28</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>28</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>29</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>29</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>15</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>15</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>15</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>13</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>13</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>13</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>30</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>30</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>30</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>31</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>31</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>31</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>12</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>12</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>12</td>
<td>15</td>
<td>16</td>
</tr>
</tbody>
</table>

S14
Table S2 Systems used for MD simulations. \(N \) stands for the number of the corresponding molecules

<table>
<thead>
<tr>
<th>(N_{\text{ChCl:LA 1:1 or AL:LA 1:1}})</th>
<th>(N_{\text{LD}})</th>
<th>(T / \text{K})</th>
<th>(P / \text{bar})</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>0</td>
<td>298</td>
<td>1</td>
</tr>
<tr>
<td>500</td>
<td>1</td>
<td>298</td>
<td>1</td>
</tr>
<tr>
<td>500</td>
<td>5</td>
<td>298</td>
<td>1</td>
</tr>
<tr>
<td>500</td>
<td>10</td>
<td>298</td>
<td>1</td>
</tr>
<tr>
<td>500</td>
<td>31</td>
<td>298</td>
<td>1</td>
</tr>
<tr>
<td>500</td>
<td>53</td>
<td>298</td>
<td>1</td>
</tr>
<tr>
<td>500</td>
<td>111</td>
<td>298</td>
<td>1</td>
</tr>
</tbody>
</table>