A novel sponge-like 2D Ni/derivative heterostructure to strengthen microwave absorption performance

Biao Zhao ^{a,d *, 1}, Xi Zhang ^{b, 1}, Jiushuai Deng ^{b,c} *, Zhongyi Bai ^a, Luyang Liang ^e,

Yang Li^e, Rui Zhang ^{a,e}

^a Henan Key Laboratory of Aeronautical Materials and Application Technology,
 School of Materials Science and Engineering, Zhengzhou University of Aeronautics,
 Zhengzhou, Henan 450046, China

^b State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization,

Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China

 ^c School of Chemical Engineering and Technology, China University of Mining & Technology (Beijing), Beijing 100083, China

^d Microcellular Plastics Manufacturing Laboratory, Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto M5S 3G8, Canada

School of Materials Science and Engineering, Zhengzhou University, Zhengzhou
450001, China

¹ These authors contributed equally to this paper.

Corresponding Author:

Dr. Biao Zhao

E-mail address: bzhao@mie.utoronto.ca; biao_zhao@zua.edu.cn

Tel: +86-371-60632007

Fax: +86-371-60632600

Dr. Jiushuai Deng

E-mail address: dengshuai689@163.com

Figure S1 Magnetization hysteresis loops of Ni/derivative heterostructures. The inset shows an enlarged image.

Figure S2 (a) Dielectric loss and (b) magnetic loss of Ni/derivative heterostructures

Figure S3 (a) Cole–Cole semicircle curve of Ni-600 samples, (b) C_0 values of different Ni/derivative heterostructures. Inset in Figure S3b is the enlarged image.

Figure S4 The μ'' - μ' curves of different Ni/derivative heterostructures.

Figure S5 The frequency and thickness-dependent impedance match Δ of Ni-600 paraffin composite with different Ni-600 contents: (a) 30 wt%; (b) 40 wt%; (c) 50 wt%; (d) 60 wt%.

Figure S6 Electromagnetic parameters (complex permittivity and permeability) of paraffin composites with different Ni-600 contents: (a) 30 wt% Ni-600; (b) 40 wt% Ni-600; (c) 50 wt% Ni-600 and (d) 60 wt% Ni-600. Insets are the corresponding tangent loss.