–Supporting Information–

From Cyclic Nanobelts to Single-Walled Carbon Nanotubes: Disclosing the Evolution of their Electronic Structure with the Help of Theoretical Methods

A. Pérez-Guardiolaa, R. Ortiz-Canoa,b, M. E. Sandoval-Salinasc,d, J. Fernández-Rossierb,e, D. Casanovad,f, A. J. Pérez-Jiméneza, and J. C. Sancho-Garcíaa,*

a Department of Physical Chemistry, University of Alicante, E-03080 Alicante, Spain

b Department of Applied Physics, University of Alicante, E-03080 Alicante, Spain

c Departament de Ciència de Materials i Química Física, Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, E-08028 Barcelona, Spain

d Donostia International Physics Center (DIPC), E-20018 Donostia, Spain

e QuantaLab, International Iberian Nanotechnology Laboratory (INL), 4715-330 Braga, Portugal

f IKERBASQUE, Basque Foundation for Science, E-48013 Bilbao, Spain
1 Physics provided by the tight-binding method

Figure S1: Sketch showing the formation of zero-energy modes when even (a-b) and odd (c) symmetrical and equivalent parts of $[n]CC$ are bound together.
Figure S2: Tight-binding eigenvalue spectra for [12]CPH with (a) $L = 1$, (b) $L = 20$, as well as the plot of their corresponding HOMO –(c) and (d)–.
2 Energy magnitudes by the RAS-SF method

Figure S3: Evolution of the ΔE_{ST} and N_{FOD} values obtained at the RAS-SF/6-31G(d) level as a function of the nanotube size ($L = 1 - 6$) for [12]CC.
3 Topology of the FT-DFT calculated FOD density for increasingly longer nanobelts
Figure S4: Chemical structures and plots ($\sigma = 0.005$ e/bohr3) of the FOD density as obtained from the FT-DFT method, for the set of [6]CC compounds ($L = 1 - 6$, from left to right for increasing values of L).
Figure S5: Chemical structures and plots ($\sigma = 0.005$ e/bohr3) of the FOD density as obtained from the FT-DFT method, for the set of [9]CC compounds ($L = 1 - 6$, from left to right for increasing values of L).
Figure S6: Chemical structures and plots ($\sigma = 0.005 \text{ e/bohr}^3$) of the FOD density as obtained from the FT-DFT method, for the set of [12]CC compounds ($L = 1 - 6$, from left to right for increasing values of L).
Figure S7: Chemical structures and plots ($\sigma = 0.005 \text{e/bohr}^3$) of the FOD density as obtained from the FT-DFT method, for the set of [12]CPH compounds ($L = 1 - 6$, from left to right for increasing values of L).
Figure S8: Chemical structures and plots ($\sigma = 0.002$ e/bohr3) of the FOD density as obtained from the FT-DFT method, for the set of [12]CPH compounds ($L = 1 - 6$, from left to right for increasing values of L).
4 Topology of the RAS-SF calculated FOD density for increasingly longer nanobelts
Figure S9: Chemical structures and plots ($\sigma = 0.002 \text{ e/bohr}^3$) of FOD obtained with RAS-SF/6-31G(d), for the set of [12]CC compounds ($L = 1 - 6$, from left to right for increasing values of L).