Supporting Information

Reaction pathways for HCN on transition metal surfaces

Mohammed K. Abdel-Rahman, Xu Feng, Mark Muir, Kushal Ghale, Ye Xu, and Michael Trenary

a Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607, United States

b Department of Chemical Engineering, Louisiana State University, Patrick F. Taylor Hall, Baton Rouge, LA 70803, United States

*Corresponding author email: mtrenary@uic.edu
Figure S1: Mass spectra of 5.0×10^{-8} Torr of $^{12}\text{C}^{14}\text{N}$ (a), $^{13}\text{C}^{14}\text{N}$ (b), and $^{12}\text{C}^{15}\text{N}$ (c). The synthesized products were determined to be pure by comparing the relative intensity of mass number 26 for $^{12}\text{C}^{14}\text{N}$ (27 for the heavier isotopes) with that of the electron impact mass spectrum of HCN in the NIST database. An intensity of 20% relative to the parent mass number (27 for $^{12}\text{C}^{14}\text{N}$ and 28 for the heavier isotopes) agrees with the national standard indicating successful synthesis and purification of HCN.
Figure S2: RAIR spectra of H12C14N on Pd(111) taken at 90 K on clean Pd(111). The band at 821 cm-1 seen in the 1.5 L spectrum that shifts to 844 cm-1 for 5.0 L is due to the HCN bending mode, which only appears in the multilayer spectra. Solid HCN begins forming at exposures of 2.5 L as indicated by the broad C-H stretching mode at 3184 cm-1.
Figure S3: RAIR spectra of a) 1.0 L H$^{13}\text{C}^{14}\text{N}$ and b) 1.0 L H$^{12}\text{C}^{15}\text{N}$ on Pd(111) taken at 90 K after annealing for 1 minute at the indicated temperatures.
Figure S4: RAIR spectra taken at 90 K after annealing to 300 K for 1 min of H12C14N on Pd(111) pre-exposed to H$_2$ (a) and exposed to H$_2$ after HCN exposure (b). Pre-exposure to H$_2$ reduced the amount of aminocarbyne formed more than for post-HCN exposure to H$_2$.
Figure S5: TPR spectra of 5.0 L HCN on Pd(111) taken from 90-1000 K at a heating rate of 1.5 K/s. Desorption of H₂ and HCN were observed at ~400 K. Although observed in other studies, C₂N₂ was not observed as a desorption product in this work.
Calculated adsorption energies of various fragments using different methods

Based on the adaptive summing method of Hensley et al.,3 when the GGA-RPBE ΔE_{ads} value for a gas molecule falls roughly below 70\% of the corresponding value in optB86b-vdW, one may expect the contribution of vdW to the adsorption energy on a transition metal surface like Pd(111) to become significant. Table S1 lists the ΔE_{ads} of several surface species that may be referenced directly to stable gas-phase species. See Ref. 3 for definition of the parameters x and f. An adaptively weighted sum of GGA-RPBE and optB86b-vdW ΔE_{ads} is found to be on average more accurate than that calculated using either functional alone. When $f = 1$ (as is the case for all the organic species listed in Table S1), this sum consists entirely of the optB86b-vdW ΔE_{ads}. When $f = 0$, the sum consists entirely of the GGA-RPBE ΔE_{ads}. Thus Table S1 indicates that GGA-RPBE under-binds the organic species but is adequate for describing H adsorption, on Pd(111). Comparison with available literature data suggests this conclusion to be correct.

Table S1: DFT-calculated adsorption energies (ΔE_{ads}, in eV) of several molecular and atomic intermediates in HCN decomposition on Pd(111), and their associated adaptive summing parameters (x and f).

<table>
<thead>
<tr>
<th>Species</th>
<th>ΔE_{ads}</th>
<th>ΔE_{ads}</th>
<th>x</th>
<th>f</th>
<th>Exp. Lit.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GGA-RPBE</td>
<td>optB86b-vdW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HCN upright</td>
<td>0.002</td>
<td>-0.562</td>
<td>1.00</td>
<td>1.00</td>
<td>-0.391</td>
</tr>
<tr>
<td>HCN di-s</td>
<td>-0.472</td>
<td>-1.292</td>
<td>0.63</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>$(\text{HCN})_2$a</td>
<td>-0.152,3</td>
<td>-1.022,3</td>
<td>0.86</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>CNH</td>
<td>-1.082</td>
<td>-1.802</td>
<td>0.40</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>-0.394</td>
<td>-0.574</td>
<td>0.31</td>
<td>0.01</td>
<td>-0.445</td>
</tr>
</tbody>
</table>

Each adsorbate is located on a (2×2) surface unit cell at 1/4 ML coverage. ΔE_{ads} is with respect to each adsorbate in gas phase and is non-ZPE corrected.

1 From Ref. 2
2 With respect to gas-phase HCN.
3 Per unit of HCN.
4 With respect to gas-phase H$_2$, per H atom.
5 From Ref. 4.
References