# ELECTRONIC SUPPLEMENTARY INFORMATION

## Mechanisms of Phase Separation in Temperature–Responsive Acidic Aqueous Biphasic Systems

Nicolas Schaeffer,<sup>a†</sup> German Pérez-Sánchez,<sup>a†</sup> Helena Passos,<sup>a</sup> José R.B. Gomes,<sup>a</sup> Nicolas Papaiconomou,<sup>b</sup> João A. P. Coutinho<sup>a</sup>\*

<sup>a</sup> CICECO – Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal

<sup>b</sup> Université Nice Sophia Antipolis, Department of Chemistry, 28 Avenue Valrose, 06103 Nice, France

† Nicolas Schaeffer and German Pérez-Sánchez are equally contributing authors.

\* Corresponding author: jcoutinho@ua.pt

#### **Supporting Information Contents:**

Number of pages: 11

Number of figures: 9

Number of Tables: 1

### **Figures**



**Figure S1.** Polarized light microscopy images of (A) vacuum dried  $[P_{44414}]Cl$  and (B) hydrated  $[P_{44414}]Cl$  in the process of dissolution at room temperature (× 100 magnification). The white arrow indicates the direction of the hydration front.



**Figure S2.** Representative snapshot of the  $[P_{44414}]Cl/H_2O$  system (1) after production run. The polar head of  $[P_{44414}]^+$  is represented in purple, the apolar  $C_{14}$  carbon tail in green and  $Cl^-$  in blue. Water molecules were removed for clarity.



**Figure S3.** (A) Radial distribution functions (RDFs) between the phosphorus atom (P) of  $[P_{44414}]^+$  and  $H_2O$  or  $Cl^-$  in the dilute  $[P_{44414}]Cl/H_2O$  system 1 (CN – coordination number) modelled within the AA-MD formalism. (B) Spatial distribution function (SDF) of  $Cl^-$  (blue surface) and  $H_2O$  (meshed grey surface) around  $[P_{44414}]^+$  in the binary  $[P_{44414}]Cl/H_2O$  system. All atoms of  $H_2O$  were considered when calculating the RDF and SDF.



**Figure S4.** Cloud points of the HCl/[P<sub>44414</sub>]Cl/H<sub>2</sub>O AcABS as a function of IL concentration for a given acid concentration. Data points represent the average of two replicates.



**Figure S5.** Cloud points of the HCl/[P<sub>44414</sub>]Cl/H<sub>2</sub>O AcABS as a function of HCl concentration for a given IL concentration. Data points represent the average of two replicates.



**Figure S6**. CG-MD simulation snapshots for the 500 component  $[P_{44414}]Cl$  system under different NaCl concentration (systems (5) to (9) described in **Table 1**) at 298 K. Above 5% wt of NaCl concentration, the  $[P_{44414}]Cl$  system is clearly biphasic in accordance with experimental results.<sup>1</sup> The colour code is as follows; the apolar  $[P_{44414}]^+$  alkyl chain tail in green, the  $[P_{44414}]^+$  butyl groups in purple, chloride anions in black, sodium cations in orange and water in blue.



**Figure S7.** RDFs between the  $[P_{44414}]^+$  head and surrounding water molecules as a function of NaCl concentration in the NaCl/ $[P_{44414}]$ Cl/H<sub>2</sub>O systems (5) to (9). RDFs were scaled by 3 to consider the 3:1 mapping of polarizable water beads.



**Figure S8**. Density profile for (A) HCl/[P<sub>44414</sub>]Cl/H<sub>2</sub>O and (B) and NaCl/[P<sub>44414</sub>]Cl/H<sub>2</sub>O micelles for systems (3) and (2) described in **Table 1**, respectively. The colour code is as follows; the apolar  $[P_{44414}]^+$  alkyl chain tail in green, the  $[P_{44414}]^+$  butyl groups in purple, phosphorus centre of  $[P_{44414}]^+$  in red, chloride anions in black, Na<sup>+</sup> or  $[H_3O]^+$  cations in orange and water in blue.



**Figure S9.** (A) Coordination numbers (CN) of Na<sup>+</sup> and  $[H_3O]^+$  (system (2) and (3) respectively) around  $[P_{44414}]^+$  as a function of distance from its central phosphorus atom (P). Overlaid on these results are the RDFs for P-H<sub>2</sub>O and P-Cl in the dilute HCl/[P<sub>44414</sub>]Cl/H<sub>2</sub>O system (3) to better illustrate the structuring around the micelle surface as a function of its 1<sup>st</sup> and 2<sup>nd</sup> hydration shells at 0.5 nm and 0.8 nm respectively. (B) Spatial distribution function of Cl<sup>-</sup> (blue surface), H<sub>2</sub>O (meshed grey surface) and [H<sub>3</sub>O]<sup>+</sup> (red surface) around [P<sub>44414</sub>]<sup>+</sup> in the HCl/[P<sub>44414</sub>]Cl/H<sub>2</sub>O system (3). All atoms of H<sub>2</sub>O and [H<sub>3</sub>O]<sup>+</sup> were considered when calculating CNs, RDFs and SDF.

#### **Tables**

**Table S1**. Water coordination number (CN) around the  $[P_{44414}]^+$  head as a function of the NaCl concentration at two different distances (r) corresponding to the maximum of the 1<sup>st</sup> (r= 0.495 nm) and 2<sup>nd</sup> peak (r= 0.970 nm) in **Figure S7**.

| [NaCl] (wt.%) | CN (at r = 0.495 nm) | CN (at r = 0.970 nm) |
|---------------|----------------------|----------------------|
| 0.0           | 2.38                 | 28.70                |
| 2.0           | 1.43                 | 18.34                |
| 4.0           | 1.24                 | 16.40                |
| 6.0           | 1.08                 | 14.24                |
| 8.0           | 1.09                 | 13.08                |

### **References**

 Schaeffer, N. Passos, H., Gras, M., Mogilireddy, V., Leal, J.P., Pérez-Sánchez, G., Gomes, J.R.B., Billard, I., Papaiconomou, N., Coutinho, J.A.P., Mechanism of ionic-liquid-based acidic aqueous biphasic system formation. Phys. Chem. Chem. Phys., 2018, 20, 9838-9846.