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Text S1  A simplified four-bead model with analytical solution 

Here we consider a simplified four-bead model where analytical solutions are available. The 

system is one-dimensional, and a periodic boundary condition (or a ring configuration) is 

assumed. To enable an analytical solution, we further assume a two-fold symmetry as 

demonstrated in the schematic below, i.e., 𝑘12 = 𝑘34 ≡ 𝑘1. 

 
Schematic of the simplified four-bead system with two-fold symmetry. The force 

constant and the equilibrium length of springs are denoted by k and S, respectively. 

S1.1 Diagonalization of the Hessian matrix (eigenvalues and eigenvectors) 

The Hessian matrix of the system: 

𝑯 = [

𝑘1 + 𝑘2 −𝑘1 0 −𝑘2
−𝑘1 𝑘1 + 𝑘3 −𝑘3 0
0 −𝑘3 𝑘1 + 𝑘3 −𝑘1
−𝑘2 0 −𝑘1 𝑘1 + 𝑘2

]. 

(S1) 

The eigenvalues {𝜆𝑛} and eigenvectors {𝒖(𝑛)} of the system are to be solved from the eigen 

equation: 
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[
 
 
 
(𝑘1 + 𝑘2) − 𝜆 −𝑘1 0 −𝑘2

−𝑘1 (𝑘1 + 𝑘3) − 𝜆 −𝑘3 0

0 −𝑘3 (𝑘1 + 𝑘3) − 𝜆 −𝑘1
−𝑘2 0 −𝑘1 (𝑘1 + 𝑘2) − 𝜆]

 
 
 

[

𝑢1
𝑢2
𝑢3
𝑢4

] = 0. 

(S2) 

Considering the two-fold symmetry of the system, the solutions have a definite parity. With an 

even parity, i.e.,  

{
𝑢4 = 𝑢1
𝑢3 = 𝑢2

, 

(S3) 

only one non-zero solution is found (while a trivial translational solution is 𝜆 = 0): 

𝜆1 = 2𝑘1. 

(S4) 

The corresponding eigenvector is 

𝒖(1) ≡ [

𝑢1
𝑢2
𝑢3
𝑢4

] =
1

2
[

1
−1
−1
1

]. 

(S5) 

With an odd parity, i.e.,  

{
𝑢4 = −𝑢1
𝑢3 = −𝑢2

, 

(S6) 

two non-zero solutions are derived: 

𝜆2,3 = 𝜆± = 𝑘1 + 𝑘2 + 𝑘3 ±√(𝑘1 + 𝑘2 + 𝑘3)
2 − (2𝑘1𝑘2 + 2𝑘1𝑘3 + 4𝑘2𝑘2)

= 𝑘1 + 𝑘2 + 𝑘3 ±√𝑘1
2 + (𝑘2 − 𝑘3)2. 

(S7) 

The corresponding eigenvectors are 

𝒖(2,3) ≡ [

𝑢1
𝑢2
𝑢3
𝑢4

]

=
1

2√𝑘1
2 + (𝑘2 − 𝑘3)2 ± (𝑘2 − 𝑘3)√𝑘1

2 + (𝑘2 − 𝑘3)2
[
 
 
 
 

−𝑘1

𝑘3 − 𝑘2 ±√𝑘1
2 + (𝑘2 − 𝑘3)2

−𝑢2
−𝑢1 ]

 
 
 
 

 

(S8) 

S1.2 Covariance of equilibrium fluctuations 

With the equation for the covariance of equilibrium fluctuations, 

〈Δ𝒓𝑖Δ𝒓𝑗〉 = 𝑘B𝑇∑
𝑢𝑖
(𝑛)
𝑢𝑗
(𝑛)

𝜆𝑛
𝑛

, 

(S9) 
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and Eqs. (S4, S5, S7, S8) above, it yields: 

〈Δ𝑑23Δ𝑑41〉

𝑘B𝑇
≡
〈(Δ𝒓3 − Δ𝒓2) ∙ (Δ𝒓1 − Δ𝒓4)〉

𝑘B𝑇
= −

𝑘1
𝑘1𝑘2 + 𝑘1𝑘3 + 2𝑘2𝑘3

, 

(S10) 

S1.3 Dynamics-driven allosteric effect (perturbation on force constant) 

The free energy can be written as a function of all the non-zero eigenvalues: 

𝐹 = 𝐶0 +
𝑘𝐵𝑇

2
ln ∏ 𝜆𝑛

𝑛=1,2,3

, 

(S11) 

where 𝐶0 is a constant irrelevant to 𝜆𝑛. For arbitrary dynamics mutations on the springs 2-3 

and 4-1, i.e.,  

{
𝑘3 → 𝑘3 + ∆𝑘23
𝑘2 → 𝑘2 + ∆𝑘41

, 

(S12) 

a combination of Eqs. (S4, S7, S11, S12) gives 

𝐹mut(2−3,4−1)(Δ𝑘23, Δ𝑘41) 

= 𝐶0 +
𝑘𝐵𝑇

2
ln(2𝑘1) +

𝑘𝐵𝑇

2
ln{(𝑘1 + 𝑘2 + 𝑘3 + ∆𝑘23 + ∆𝑘41)

2 − [𝑘1
2 + (𝑘2 − 𝑘3 + ∆𝑘23 − ∆𝑘41)

2]}. 

(S13) 

Therefore, the allosteric coupling free energy is 

ΔΔ𝐹 = 𝐹mut(2−3,4−1)(Δ𝑘23, Δ𝑘41) − 𝐹
mut(2−3,4−1)(Δ𝑘23, 0) − 𝐹

mut(2−3,4−1)(0, Δ𝑘41) + 𝐹
mut(2−3,4−1)(0,0) 

≅
𝜕2𝐹mut(2−3,4−1)(Δ𝑘23, Δ𝑘41)

𝜕∆𝑘23𝜕∆𝑘41
|
0

∆𝑘23∆𝑘41 

= −
𝑘B𝑇

2

𝑘1
2

(𝑘1𝑘2 + 𝑘1𝑘3 + 2𝑘2𝑘3)2
∆𝑘23∆𝑘41 

(S14) 

up to the second-order expansion. Comparing Eq. (S10) and Eq. (S14), we finally obtain the 

dynamics-driven allosteric effect: 

ΔΔ𝐹 = −
1

2𝑘B𝑇
〈Δ𝑑23Δ𝑑41〉

2∆𝑘23∆𝑘41, 

(S15) 

which is in fully agreement with Eq. (26) of the main text. 

S1.4 Structure-driven allosteric effect (perturbation on bead radius) 

Consider perturbation Δ𝑎23, Δ𝑎41 on the equilibrium length of springs 2-3 and 4-1, the 

potential energy of the system becomes 

𝑉 =
𝑘1
2
(∆𝑥12

2 + ∆𝑥34
2) +

𝑘3
2
(∆𝑥23 − ∆𝑎23)

2 +
𝑘2
2
(∆𝑥41 − ∆𝑎41)

2. 

(S16) 
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The period-boundary condition requires that 

Δ𝑥12 + Δ𝑥23 + Δ𝑥34 + Δ𝑥41 = 0. 

(S17) 

Together with the two-fold symmetry of the system, we thus have 

∆𝑥12 = ∆𝑥34 = −
∆𝑥23 + ∆𝑥41

2
 

(S18) 

for the energy minimum state, so 

𝑉 =
𝑘1
4
(∆𝑥23 + ∆𝑥41)

2 +
𝑘3
2
(∆𝑥23 − ∆𝑎23)

2 +
𝑘2
2
(∆𝑥41 − ∆𝑎41)

2. 

(S19) 

The solution for the energy minimum state is 

{
 
 

 
 ∆𝑥23 =

2𝑘3(𝑘1 + 2𝑘2)∆𝑎23 − 2𝑘2𝑘1∆𝑎41
(𝑘1 + 2𝑘3)(𝑘1 + 𝑘2) − 𝑘1

2

∆𝑥41 =
2𝑘2(𝑘1 + 2𝑘3)∆𝑎41 − 2𝑘3𝑘1∆𝑎23
(𝑘1 + 2𝑘3)(𝑘1 + 2𝑘2) − 𝑘1

2

. 

(S20) 

and 

𝑉0(∆𝑎23, ∆𝑎41) =
𝑘1𝑘2𝑘3

2(𝑘1𝑘2 + 𝑘1𝑘3 + 2𝑘2𝑘3)
(∆𝑎23 + ∆𝑎41)

2. 

So the allosteric effect is 

∆∆𝑉0 = 𝑉0(∆𝑎23, ∆𝑎41) − 𝑉0(∆𝑎23, 0) − 𝑉0(0, ∆𝑎41) + 𝑉0(0,0) 

=
𝑘1𝑘2𝑘3

𝑘1𝑘2 + 𝑘1𝑘3 + 2𝑘2𝑘3
∆𝑎23∆𝑎41. 

(S21) 

Considering Eq. (S10), we finally get 

∆∆𝑉0 = −
𝑘2𝑘3
𝑘B𝑇

〈Δ𝑑23Δ𝑑41〉∆𝑎23∆𝑎41. 

(S22) 

It is consistent with Eq. (39) in the main text. 
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Table S1. A summary on the Pearson’s 𝑹 values between various 

quantities. 

 

y x R values source 

Dynamics-driven allostery 

∆𝐹 

(a single spring 

perturbed) 

𝐶𝑖𝑗
(DP)

 0.12 Fig. 4(a) 

〈|Δ𝐫𝑖|
2〉1/2 〈|Δ𝐫𝑗|

2
〉1/2 0.42 Fig. 4(b) 

〈(Δ𝑑𝑖𝑗)
2
〉 1.000 Fig. 4(c) 

∆𝐹mut_𝑖 𝑛𝑖 0.88 Fig. 5(a) 

∆𝐹mut_𝑖 𝑛𝑖⁄  〈|Δ𝐫𝑖|
2〉1/2 0.68 Fig. 5(b) inset 

∆𝐹mut_𝑖 〈(Δ𝑑𝑖∗)
2〉 

1.000 Fig. 5(c) 

0.997 Fig. 5(d) 

∆∆𝐹 

〈Δ𝑑𝑖∗Δ𝑑𝑘∗〉
2 

-1.000 Fig. 6(b) 

-1.000, -0.998, -0.994, 

-0.994 
Fig. 6(d) 

𝐶𝑖𝑘
(DP)

 -0.50 Fig. 6(c) 

Structure-driven allostery 

Δ𝑉0,mut_𝑖 𝑛𝑖 0.86 Fig. 7(a) 

Δ𝑉0,mut_𝑖

− 𝑛𝑖𝛾(Δ𝑎)
2 2⁄  

〈Δ𝑑𝑖∗Δ𝑑𝑖∗〉 0.999 Fig. 7(c) 

|ΔΔ𝑉0| 
𝐶𝑖𝑘
(DP)

 0.57 Fig. 8(b) 

〈Δ𝐫𝑖 ∙ Δ𝐫𝑘〉 0.38 Fig. 8(c) 

ΔΔ𝑉0 

𝐶𝑖𝑘
(DP)

 0.19 Fig. 8(b) 

〈Δ𝐫𝑖 ∙ Δ𝐫𝑘〉 0.11 Fig. 8(c) 

〈Δ𝑑𝑖∗Δ𝑑𝑘∗〉 
-1.00 Fig. 8(d) 

-1.00, -0.97, -0.85, -0.98 Fig. 8(e) 
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FIGURE S1  The correlation between 𝐶𝑖𝑗
(DP)

 of Gō-like model (MD) and ANM for the protein 

CAP with different cutoff distance 𝑟c (in Å). Solid lines indicate the ideal curve of 𝑦 = 𝑥. 
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FIGURE S2  Root-mean-square-fluctuation (RMSF), i.e., 〈|Δ𝐫𝑖|
2〉1/2 , as a function of the 

number of springs connected to the residue (𝑛𝑖), calculated from ANM with parameters 𝑚 =

0.11 kg/mol, 𝛾 = 1.0 kcal/(mol·Å2) and various 𝑟c values as indicated in the graphs. Four 

systems were examined: chymotrypsin inhibitor 2 (CI2), pig plasma retinol binding protein (RBP), 

tyrosine-protein phosphatase nonreceptor type 1 (PTP1B) and the catabolite activator protein 

(CAP).  
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FIGURE S3  Distribution of vibration frequencies for four protein systems (from left to right) 

calculated from ANM with various 𝑟c values (from top to bottom). 𝑚 = 0.11 kg/mol, 𝛾 = 1.0 

kcal/(mol·Å2). Solid lines indicate the prediction given by the Debye model of solids, i.e., 

𝑃(𝜔) ∝ 𝜔2, which can be used to well describe the distribution of lower frequencies. In 

addition, the frequencies satisfy ℏω < 𝑘B𝑇, so the high temperature approximation is satisfied 

and the Boltzmann statistics can be applied reliably. 
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FIGURE S4  Calculated coupling free energy ∆∆𝐹 of dynamics-driven allostery in CAP with 

respect to (a) the scalar cross-correlation 〈Δ𝐫𝑖 ∙ Δ𝐫𝑘〉 (in Å2), (b) the product of the number of 

springs connected to the mutated residues (𝑛𝑖𝑛𝑘), (c) 𝑛𝑖𝑛𝑘〈Δ𝐫𝑖 ∙ Δ𝐫𝑘〉 and (d) 𝑛𝑖𝑛𝑘𝐶𝑖𝑘
(DP)

. 𝑟c =

9Å, 𝑚 = 0.11 kg/mol, 𝛾 = 1.0 kcal/(mol·Å2), and ∆𝛾 = 0.1 kcal/(mol·Å2) were used in the 

calculations. 
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FIGURE S5  Allostery free energy (∆∆𝐹) and coefficient (
𝑘B𝑇∆∆𝐹

∆𝐹mut_𝑖∆𝐹mut_𝑘
) plotted against 𝑟𝑖𝑘

(0)
 for 

the four protein systems (from left to right) under different ∆𝛾 values (from top to bottom). 

The average values as a function of 𝑟𝑖𝑘 are plotted as black squares with the exponential fits 

(𝑦 ∝ 𝑒−𝑥 𝑥0⁄ ) given as solid lines. The fitted 𝑥0 (in Å) are listed in the top two rows. 𝑟c = 9 Å, 

𝑚 = 0.11 kg/mol, and 𝛾 = 1.0 kcal/(mol·Å2) were used in the calculations. 
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FIGURE S6  Poor correlation between dynamics-driven and structure-driven allostery 

coefficients. (a) Correlation between 〈Δ𝑑𝑖∗Δ𝑑𝑖∗〉 [Eq. (43)] and 〈(Δ𝑑𝑖∗)
2〉 [Eq. (40)] for the 

four systems, which describe single residue mutation effects. (b) Correlation between 

〈Δ𝑑𝑖∗Δ𝑑𝑘∗〉 [Eq. (44)] and 〈Δ𝑑𝑖∗Δ𝑑𝑘∗〉
2 [Eq. (41)], which describe the allosteric effects under a 

double residue mutation. 

 

 

FIGURE S7  Calculated coupling equilibrium potential (ΔΔ𝑉0) of structure-driven allostery in 

PTP1B plotted against to (a) the product of the number of springs connected to the mutated 

residues (𝑛𝑖𝑛𝑘), (b) 𝑛𝑖𝑛𝑘〈Δ𝐫𝑖 ∙ Δ𝐫𝑘〉 and (c) 𝑛𝑖𝑛𝑘𝐶𝑖𝑘
(DP)

. 𝑟c = 9 Å, 𝑚 = 0.11 kg/mol, 𝛾 = 1.0 

kcal/(mol·Å2), and ∆𝑎 = 0.1 Å were used in the calculations. 
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FIGURE S8  ΔΔ𝑉0 and 
ΔΔ𝑉0

(∆𝑉0,mut_𝑖∆𝑉0,mut_𝑗)
1 2⁄  with respect to 𝑟𝑖𝑘

(0)
 for the four proteins in both 

linear and logarithmic scales. The average values as a function of 𝑟𝑖𝑘
(0)

 are plotted as black 

squares with the exponential fits (𝑦 ∝ 𝑒−𝑥 𝑥0⁄ ) presented as solid lines. The fitted 𝑥0 (in Å) are 

listed in some panels. 𝑟c = 9 Å, 𝑚 = 0.11 kg/mol, 𝛾 = 1.0 kcal/(mol·Å2) and ∆𝑎 = 0.1 Å 

were used in the calculations. 
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FIGURE S9  Distribution of ΔΔ𝑉0, 〈Δ𝑑𝑖∗Δ𝑑𝑘∗〉 and −
𝑘B𝑇∆∆𝐹

∆𝐹mut_𝑖∆𝐹mut_𝑘
 data with 20Å ≤ 𝑟𝑖𝑘 ≤

25Å for PTP1B. 𝑟c = 9 Å, 𝑚 = 0.11 kg/mol, 𝛾 = 1.0 kcal/(mol·Å2) and ∆𝑎 = 0.1 Å were 

used in the ANM calculations. 

 

 

 


