Electronic Supplementary Information

Highly efficient visible-light-driven photocatalytic degradation of Rhodamine B from a novel Z-scheme Ag₃PO₄/MIL-101/NiFe₂O₄ composite

Tianhong Zhouᵃ,ᵇ, Guozhen Zhangᵃ*, Hongwei Zhangᵃ, Hao Yangᵃ, Pengjun Maᵇ, Xiaoting Liᵇ, Xiaoli Qiuᵇ, Gang Liuᵇ

ᵃ School of environmental and municipal engineering, Lanzhou Jiaotong University, Lanzhou 730070, PR China
ᵇ Research & Development Center for Eco-material and Eco-chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China

Corresponding author: Guozhen Zhang (zhangguozhen@mail.lzjtu.cn)
CAPTIONS

Fig. S1 XRD patterns in the 2θ range from 5 to 90° of fresh and used APO/MOF/NFO(20%) samples..S3

Fig. S2 Ag 3d XPS spectra of APO-fresh (a), APO/MOF/NFO(20%)-fresh (b), APO-used (c) and APO/MOF/NFO(20%)-used (d)..............................S4

Fig. S3 Photocatalytic degradation curves of RhB over APO/MOF/NFO(20%) system in the different concentration of RhB (a) and photocatalyst mass (b); kinetics study of photocatalytic RhB degradation effect of RhB over APO/MOF/NFO(20%) system in the different concentration of RhB (c) and photocatalyst mass (d)S5

Fig. S4 (a) Z-Scheme and (b) heterojunction mechanism over APO/MOF/NFO(20%) for RhB degradation under visible light illumination..S6

Table S1 Surface Area of the Ag$_3$PO$_4$ photocatalysts..S7

Reference..S8
Fig. S1 XRD patterns in the 2θ range from 5 to 90° of fresh and used APO/MOF/NFO(20%) samples.
Fig. S2 Ag 3d XPS spectra of APO-fresh (a), APO/MOF/NFO(20%)-fresh (b), APO-used (c) and APO/MOF/NFO(20%)-used (d).
Fig. S3 Photocatalytic degradation curves of RhB over APO/MOF/NFO(20%) system in the different concentration of RhB (a) and photocatalyst mass (b); kinetics study of photocatalytic RhB degradation effect of RhB over APO/MOF/NFO(20%) system in the different concentration of RhB (c) and photocatalyst mass (d).
Fig. S4 (a) Z-Scheme and (b) heterojunction mechanism over APO/MOF/NFO(20%) for RhB degradation under visible light illumination.
Table S1 Surface Area of the Ag₃PO₄ photocatalysts.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Preparation method</th>
<th>Particle sizes(um)</th>
<th>S_{BET}(m² g⁻¹)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag₃PO₄</td>
<td>Ion-exchange deposition</td>
<td>4 - 5</td>
<td>0.01</td>
<td>[1]</td>
</tr>
<tr>
<td>Ag₃PO₄</td>
<td>Liquid phase deposition</td>
<td>0.8-1</td>
<td>3.3</td>
<td>[2]</td>
</tr>
<tr>
<td>Ag₃PO₄</td>
<td>Precipitation</td>
<td>1 - 2</td>
<td>0.08</td>
<td>[3]</td>
</tr>
<tr>
<td>Ag₃PO₄</td>
<td>Deposition</td>
<td>5-10</td>
<td>1.17</td>
<td>[4]</td>
</tr>
<tr>
<td>Ag₃PO₄</td>
<td>Ion-exchange deposition</td>
<td>3-5</td>
<td>0.51</td>
<td>[5]</td>
</tr>
<tr>
<td>Ag₃PO₄</td>
<td>Precipitation</td>
<td>4</td>
<td>0.24</td>
<td>[6]</td>
</tr>
</tbody>
</table>
Reference