Carbon supported perovskite-like CsCuCl$_3$ nanoparticles: A highly active and cost-effective heterogeneous catalyst in the hydrochlorination of acetylene to vinyl chloride

Yuanyuan Zhai, Jia Zhao, Xiaoxia Di, Shuxia Di, Bolin Wang, Yuxue Yue, Gangfeng Sheng, Huixia Lai, Lingling Guo, Hong Wang, Xiaonian Li

*Industrial Catalysis Institute, Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, China.
Tel./fax: +86 57188320002.
E-mail addresses: jiazhao@zjut.edu.cn (J. Zhao), xnli@zjut.edu.cn (X. Li).

Supporting information
Syntheses of unsupported CsCuCl\(_3\)

Cesium cupric chloride (CsCuCl\(_3\)) was synthesized in an aqueous solution. The Cs precursor, CsCl, was weighted and dissolved in the deionized water, then the equal molar CuCl\(_2\)\(\cdot\)2H\(_2\)O was added into CsCl solution. After full stirring and dissolving, set the solution quietly at room temperature. CsCuCl\(_3\) crystals readily grew from the solution. After adequate 12h growth, dark yellow CsCuCl\(_3\) crystals can be obtained.

![Fig. S1 The preparation procedure of CsCuCl\(_3\) crystals](image)

Fig. S1 The preparation procedure of CsCuCl\(_3\) crystals
Figure S2 H₂-TPR analysis of unsupported CuCl₂ and CuCsCl₃ crystals