Supplementary Material

Dimethyl ether carbonylation to methyl acetate over highly crystalline zeolite-seed derived ferrierite

Jihyeon Kim, Hyungwon Ham, Hyun Seung Jung, Yang Wang, Yingluo He, Noritatsu Tsubaki, Sung June Cho*, Gui Young Han, Jong Wook Bae**

Table S1. DME conversion and product distribution on the seed-derived FER zeolites

 synthesized by using various zeolite seeds and commercial FER zeolite (CFER)

 Table S2. Crystallographic parameters for the seed-derived FER zeolites analyzed by

 Rietveld refinement analysis from XRD data

Table S3. Bond valences for the seed-derived FER zeolites analyzed by Rietveld refinement

 analysis from XRD data

Figure S1. (A) N_2 adsorption-desorption isotherms and (B) pore size distribution of the fresh seed-derived FER zeolites prepared by using various zeolite seeds

Figure S2. (A) DME conversion and (B) MA selectivity with time on stream on the seedderived FER zeolites prepared by using various zeolite seeds

Figure S3. DME conversion and product distribution with time on stream (h) on the various pristine zeolites out at T = 220 °C, P = 1.0 MPa, and space velocity (SV) of 2000 L/(kg_{cat}·h) using a mixed gas reactant of DME/CO/N₂(mol%) = 5/45/50

Figure S4. FT-IR spectra of the adsorbed DME at 200 °C on the fresh seed-derived FER zeolites synthesized from various zeolite seeds

Figure S5. FT-IR spectra of the adsorbed DME in the range of $1500 - 2000 \text{ cm}^{-1}$ at different temperatures on the fresh seed-derived FER zeolites synthesized from various zeolite seeds **Figure S6**. FT-IR spectra of the adsorbed DME in the range of $3100 - 3900 \text{ cm}^{-1}$ at different temperatures on the fresh seed-derived FER zeolites synthesized from various zeolite seeds **Figure S7**. Correlations of methanol conversions to DME with the amount of weak acid sites (measured by NH₃-TPD) on the solid-acid heterogeneous catalysts (mainly, Al₂O₃ and zeolites), where too larger amounts of acidic sites can also generate some coke precursors by keeping the dehydration activity constant

Figure S8. Rietveld refinement plot of four different seed-derived FER zeolites such as (A) FER, (B) FER@FER, (C) MOR@FER, (D) ZSM-5@FER and (E) USY@FER

Figure S9. NMR spectra of the fresh seed-derived FER zeolites with ²⁷Al MAS NMR spectra, ²⁹Si MAS NMR spectra and deconvoluted area (%) of the Al-O-Si structures

Figure S10. Equilibrium conversions of DME carbonylation to methyl acetate at the fixed pressure of 1.0 MPa with respect to reaction temperatures (100 - 400 °C) and CO/DME molar ratios (1 - 30)

Figure S11. Variations of FT-IR spectra of the adsorbed methyl intermediates appeared at the bands of 2968 and 2949 cm⁻¹ on the fresh FER and FER@FER through a successive adsorption experiment of DME followed by CO reactant at a fixed temperature of 220 °C

Scheme S1. Proposed reaction mechanisms on the highly crystalline FER@FER

Calculations of the mass- and heat-transfer limitations [S1] for the DME carbonylation reaction to methyl acetate on the most active FER@FER were verified at the reaction conditions of T = 220 °C, P = 1.0 MPa, and space velocity (SV) of 2000 L/(kg_{cat}·h) using a mixed gas reactant of DME/CO/N₂(mol%) = 5/45/50.

(1) Mears Criterion for External Diffusion (Fogler, p841; Mears, 1971)

If $\frac{-r_A' \rho_b Rn}{k_c C_{Ab}} < 0.15$, then external mass transfer is not limited

 $-r_A' = \text{observed reaction rate, kmol-C}_3/\text{kg}_{\text{cat}}\cdot\text{s}$

n = reaction order

R = catalyst particle radius, m

 ρ_b = bulk density of catalyst bed, kg/m³ = $\rho_c(1-\varphi)$ (φ = porosity or void fraction of packed bed)

 $\rho_c =$ solid catalyst density, kg/m³

 C_{Ab} = bulk gas concentration of propane, kmol/m³

 k_c = mass transfer coefficient, m/s

$$\frac{-r_{A}'\rho_{b}Rn}{k_{c}C_{Ab}} = [1.60 \times 10^{-7} \text{ kmol-C}_{3}/\text{kg}_{\text{cat}} \cdot \text{s}] \times [47.3 \text{ kg/m}^{3}] \times [3 \times 10^{-5} \text{ m}] \times [1] / ([11.20 \text{ m/s}] \times [10^{-5} \text{ m}] \times [1] / ([11.20 \text{ m/s}] \times [10^{-5} \text{ m}] \times [10^{-5$$

 $[0.0032 \text{ kmol/m}^3]) = 6.3 \times 10^{-11} < 0.15 \rightarrow \text{External diffusion is not limited.}$

(2) Weisz-Prater Criterion for Internal Diffusion (Fogler, p839)

$$C_{WP} = \frac{-r'_{A(obs)} \rho_c R^2}{D_e C_{As}} < 1$$
, then internal mass transfer is not limited

 $-r'_{A(obs)} = observed reaction rate, kmol-C_3/kg_{cat} \cdot s$

R = catalyst particle radius, m

 ρ_c = solid catalyst density, kg/m³; [$\rho_{c,FER}$ = 1493 kg/m³]

 $D_e = effective \text{ gas-phase diffusivity, } m^2/s$ [Fogler, p815]

$$= \frac{D_{AB}\phi_p\sigma_c}{\tau} \text{ where }$$

 D_{AB} = gas-phase diffusivity m²/s; ϕ_p = pellet porosity; σ_c =constriction factor; τ =tortuosity. C_{As} = gas concentration of propane at the catalyst surface, kmol-C₃/m³

$$C_{WP} = \frac{-r'_{A(obs)} \rho_c R^2}{D_e C_{As}} = [1.60 \times 10^{-7} \text{ kmol-} C_3/\text{kg}_{cat} \cdot \text{s}] \times [1493 \text{ kg/m}^3] \times [3 \times 10^{-5} \text{ m}]^2 / ([2.93 \times 10^{-5} \text{ m}]^2$$

 $10^{-6} \text{ m}^2/\text{s} \times [9.67 \times 10^{-6} \text{ kmol-}C_3/\text{m}^3]) = 7.6 \times 10^{-7} < 1 \rightarrow$ Internal diffusion is not limited.

(3) Mears Criterion for External (Interphase) Heat Transfer (Fogler, p842)

$$\frac{\left|\frac{-\Delta H_r(-r_A')\rho_b RE}{h_t T_b^2 R_g}\right| < 0.15}{\text{, then external heat transfer is not limited}}$$

 ΔH_r = Heat of reaction, kJ/mol

 $-r_A' = \text{observed reaction rate, kmol-C}_3/\text{kg}_{\text{cat}}\cdot\text{s}$

 ρ_b = bulk density of catalyst bed, kg/m³ = $\rho_c(1-\varphi)$ (φ = porosity or void fraction of packed bed)

R = catalyst particle radius, m

E = activation energy of the reaction, kJ/kmol

n = reaction order

 h_t = heat transfer coefficient, kJ/m²·K·s

 $T_b = bulk$ gas temperature, K

 $R_g = gas constant$, 8.314 x 10⁻³ kJ/mol·K

$$\left| \frac{-\Delta H_{r}(-r_{A}')\rho_{b}RE}{h_{t}T_{b}^{2}R_{g}} \right| = ([118.7 \text{ kJ/mol}] \times [1.60 \times 10^{-7} \text{ kmol}-C_{3}/\text{kg}_{cat}\cdot\text{s}] \times [47.3 \text{ kg/m}^{3}] \times [3 \times 10^{-7} \text{ kmol}-C_{3}/\text{kg}_{cat}\cdot\text{s}] \times [47.3 \text{ kg/m}^{3}] \times [3 \times 10^{-7} \text{ kmol}-C_{3}/\text{kg}_{cat}\cdot\text{s}] \times [47.3 \text{ kg/m}^{3}] \times [3 \times 10^{-7} \text{ kmol}-C_{3}/\text{kg}_{cat}\cdot\text{s}] \times [47.3 \text{ kg/m}^{3}] \times [3 \times 10^{-7} \text{ kmol}-C_{3}/\text{kg}_{cat}\cdot\text{s}] \times [47.3 \text{ kg/m}^{3}] \times [3 \times 10^{-7} \text{ kmol}-C_{3}/\text{kg}_{cat}\cdot\text{s}] \times [47.3 \text{ kg/m}^{3}] \times [3 \times 10^{-7} \text{ kmol}-C_{3}/\text{kg}_{cat}\cdot\text{s}] \times [47.3 \text{ kg/m}^{3}] \times [3 \times 10^{-7} \text{ kmol}-C_{3}/\text{kg}_{cat}\cdot\text{s}] \times [47.3 \text{ kg/m}^{3}] \times [3 \times 10^{-7} \text{ kmol}-C_{3}/\text{kg}_{cat}\cdot\text{s}] \times [47.3 \text{ kg/m}^{3}] \times [3 \times 10^{-7} \text{ kmol}-C_{3}/\text{kg}_{cat}\cdot\text{s}] \times [47.3 \text{ kg/m}^{3}] \times [3 \times 10^{-7} \text{ kmol}-C_{3}/\text{kg}_{cat}\cdot\text{s}] \times [47.3 \text{ kg/m}^{3}] \times [3 \times 10^{-7} \text{ kmol}-C_{3}/\text{kg}_{cat}\cdot\text{s}] \times [47.3 \text{ kg/m}^{3}] \times [3 \times 10^{-7} \text{ kmol}-C_{3}/\text{kg}_{cat}\cdot\text{s}]$$

 $10^{-5} \text{ m}] \times [95 \text{ kJ/mol}]) / ([40.92 \text{ kJ/m}^2.\text{K.s}] \times [493.15 \text{ K}]^2 \times [8.314 \times 10^{-3} \text{ kJ/mol}.\text{K}]) = 3.1 \times 10^{-5} \text{ m}$

 $10^{-13} < 0.15 \rightarrow$ External heat transfer is not limited.

(4) Mears Criterion for Combined Interphase and Intraparticle Heat and Mass Transport (Mears, 1971)

If $\frac{-r'_A R^2}{C_{Ab} D_e} < \frac{1 + 0.33 \gamma \chi}{|n - \gamma_b \beta_b| (1 + 0.33 n \omega)}$, interphase and intraparticle heat and mass transport are

not limited When

$$\gamma = \frac{E}{R_g T_s}, \quad \gamma_b = \frac{E}{R_g T_b}, \quad \beta_b = \frac{(-\Delta H_r) D_e C_{Ab}}{\lambda T_b}, \quad \chi = \frac{(-\Delta H_r) - r'_A R}{h_t T_b}, \quad \omega = \frac{-r'_A R}{k_c C_{Ab}}$$

 γ = Arrhenius number; β_b = heat generation function

 λ = catalyst thermal conductivity, W/m·K

 χ = Damköhler number for interphase heat transport

 ω = Damköhler number for interphase mass transport

$$-r_A' = \text{observed reaction rate, kmol-C}_3/\text{kg}_{\text{cat}}\cdot\text{s}$$

R = catalyst particle radius, m

 C_{Ab} = bulk gas concentration of propane, kmol/m³

 D_e = effective gas-phase diffusivity, m²/s

$$\frac{-r'_{A}R^{2}}{C_{Ab}D_{e}} = ([1.60 \times 10^{-7} \text{ kmol-}C_{3}/\text{kg}_{cat} \cdot \text{s}] \times [3 \times 10^{-5}\text{m}]^{2}) / ([0.0032 \text{ kmol/}\text{m}^{3}] \times [2.9 \times 10^{-6})^{-6})$$

 m^{2}/s]) = 1.5 × 10⁻¹² < 3 \rightarrow Interphase and Intraparticle Heat and Mass Transport are not limited.

[S1] S.T. Oyama, X. Zhang, J. Lu, Y. Gu, T. Fujitani, J. Catal. 257 (2008) 1-4.

						/
Notation	Conversion	Deactivation	Selectivity (C-mol%)			Yield of
	of DME (%)	rate $(\%/h)^{b}$	MA	methanol	HC ^c	MA (%)
FER	55.4	0.12	95.4	2.5	2.1	52.9
FER@FER	71.5	0.07	99.2	0.5	0.3	70.9
MOR@FER	42.5	0.23	95.2	2.8	2.0	40.5
ZSM-5@FER	30.7	0.14	89.7	4.7	5.6	27.5
USY@FER	33.8	0.13	94.2	3.9	1.9	31.8
CFER (@200 °C) ^d	10.9	-	86.8	11.1	2.1	9.5
CFER (@220 °C) ^d	14.8	-	80.5	15.3	4.2	11.9
CFER (@240 °C) ^d	15.5	-	91.4	6.3	2.3	14.2

Table S1. DME conversion and product distribution on the seed-derived FER zeolites synthesized by using various zeolite seeds^a and commercial FER zeolite (CFER)

^aThe conversions and selectivities were presented using the averaged values at the reaction duration of 80 -100 h.

^bThe deactivation rate (%/h) of the various zeolites coated with ferrierite was calculated by using the equation of [(maximum conversion of DME – conversion of DME at 100 h)/(reaction duration), which was further normalized using total Bronsted acid sites.

^cHC represents the formed hydrocarbons, mainly CH₄,

^dThe CFER represents the commercial FER (Si/Al ratio = 10.4) zeolites, and the activity was measured at the reaction conditions of T = 220 - 240 °C, P = 1.0 MPa, and space velocity (SV) of 2000 L/(kg_{cat}·h) using a mixed gas reactant of DME/CO/N₂(mol%) = 5/45/50.

Rietveld reimement analysis from ARD data"							
sample	a (Å)	b (Å)	c (Å)	V (Å ³)	$R_{\rm p}(\%)$	$R_{wp}(\%)$	
FER	18.864(3)	14.1017(17)	7.4511(9)	1982.1(4)	6.58	8.48	
FER@FER	18.875(3)	14.1068(17)	7.4516(8)	1984.1(4)	6.72	8.79	
MOR@FER	18.872(3)	14.1020(2)	7.4510(10)	1982.9(5)	6.35	8.27	
ZSM-5@FER	18.856(4)	14.0990(2)	7.4516(10)	1981.0(5)	5.72	7.57	
USY@FER	18.857(3)	14.1033(16)	7.4535(8)	1982.2(4)	6.09	7.83	

Table S2. Crystallographic parameters for the seed-derived FER zeolites analyzed by

 Rietveld refinement analysis from XRD data^a

^aThe space group for FER zeolite is Immm

Bond valence						
T1 (16)	T2 (8)	T3 (8)	T4 (4)			
4.24(15)	3.91(18)	4.0(2)	4.3(3)			
4.46(17)	3.76(19)	4.2(2)	4.2(3)			
4.31(17)	3.86(19)	3.9(2)	4.3(3)			
4.27(16)	3.81(18)	4.2(2)	4.8(3)			
4.27(14)	3.98(17)	4.1(19)	4.4(3)			
Lattice energy per T atom (eV)						
-125.17159	-125.2895731	-125.2865822	-125.4194282			
	T1 (16) 4.24(15) 4.46(17) 4.31(17) 4.27(16) 4.27(14) -125.17159	Bond T1 (16) T2 (8) 4.24(15) 3.91(18) 4.46(17) 3.76(19) 4.31(17) 3.86(19) 4.27(16) 3.81(18) 4.27(14) 3.98(17) Lattice energy -125.17159 -125.2895731	$\begin{tabular}{ c c c c c c c } \hline Bond valence \\\hline \hline T1 (16) & T2 (8) & T3 (8) \\\hline 4.24(15) & 3.91(18) & 4.0(2) \\\hline 4.46(17) & 3.76(19) & 4.2(2) \\\hline 4.31(17) & 3.86(19) & 3.9(2) \\\hline 4.27(16) & 3.81(18) & 4.2(2) \\\hline 4.27(14) & 3.98(17) & 4.1(19) \\\hline Lattice energy per T atom (eV) \\\hline -125.17159 & -125.2895731 & -125.2865822 \\\hline \end{tabular}$			

 Table S3. Bond valences for the seed-derived FER zeolites analyzed by Rietveld refinement analysis from XRD data^a

 $^a\mbox{The}\ \rho$ and b are 1.624 and 0.389, respectively

Figure S1. (A) N₂ adsorption-desorption isotherms and (B) pore size distribution of the fresh seed-derived FER zeolites prepared by using various zeolite seeds

Figure S2. (A) DME conversion and (B) MA selectivity with time on stream on the seedderived FER zeolites prepared by using various zeolite seeds

Figure S3. DME conversion and product distribution with time on stream (h) on the various pristine zeolites out at T = 220 °C, P = 1.0 MPa, and space velocity (SV) of 2000 L/(kg_{cat}·h) using a mixed gas reactant of DME/CO/N₂(mol%) = 5/45/50

Figure S4. FT-IR spectra of the adsorbed DME at 200 °C on the fresh seed-derived FER zeolites synthesized from various zeolite seeds

Figure S5. FT-IR spectra of the adsorbed DME in the range of $1500 - 2000 \text{ cm}^{-1}$ at different temperatures on the fresh seed-derived FER zeolites synthesized from various zeolite seeds

Figure S6. FT-IR spectra of the adsorbed DME in the range of 3100 - 3900 cm⁻¹ at different temperatures on the fresh seed-derived FER zeolites synthesized from various zeolite seeds

Figure S7. Correlations of methanol conversions to DME with the amount of weak acid sites (measured by NH₃-TPD) on the solid-acid heterogeneous catalysts (mainly, Al₂O₃ and zeolites), where too larger amounts of acidic sites can also generate some coke precursors by keeping the dehydration activity constant

Figure S8. Rietveld refinement plot of four different seed-derived FER zeolites such as (A) FER, (B) FER@FER, (C) MOR@FER, (D) ZSM-5@FER and (E) USY@FER

Figure S8. Rietveld refinement plot of four different seed-derived FER zeolites such as (A) FER, (B) FER@FER, (C) MOR@FER, (D) ZSM-5@FER and (E) USY@FER (continued)

Scaling: 40.0(5.0X)

Figure S8. Rietveld refinement plot of four different seed-derived FER zeolites such as (A) FER, (B) FER@FER, (C) MOR@FER, (D) ZSM-5@FER and (E) USY@FER (continued)

Figure S9. NMR spectra of the fresh seed-derived FER zeolites with ²⁷Al MAS NMR spectra, ²⁹Si MAS NMR spectra and deconvoluted area (%) of Al-O-Si structures

Figure S10. Equilibrium conversions of DME carbonylation to methyl acetate at the fixed pressure of 1.0 MPa with respect to reaction temperatures (100 - 400 °C) and CO/DME molar ratios (1 - 30)

Figure S11. Variations of FT-IR spectra of the adsorbed methyl intermediates appeared at the bands of 2968 and 2949 cm⁻¹ on the fresh FER and FER@FER through a successive adsorption experiment of DME followed by CO reactant at a fixed temperature of 220 °C

Scheme S1. Proposed reaction mechanisms on the highly crystalline FER@FER