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Calculations of the mass- and heat-transfer limitations [S1] for the DME carbonylation 

reaction to methyl acetate on the most active FER@FER were verified at the reaction 

conditions of T = 220 °C, P = 1.0 MPa, and space velocity (SV) of 2000 L/(kgcat·h) using a 

mixed gas reactant of DME/CO/N2(mol%) = 5/45/50.

(1) Mears Criterion for External Diffusion (Fogler, p841; Mears, 1971)

If , then external mass transfer is not limited
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 = observed reaction rate, kmol-C3/kgcat·s'Ar

n = reaction order

R = catalyst particle radius, m

ρb = bulk density of catalyst bed, kg/m3 = ρc(1-ф) (ф= porosity or void fraction of packed bed)

ρc = solid catalyst density, kg/m3

CAb = bulk gas concentration of propane, kmol/m3

kc = mass transfer coefficient, m/s 

= [1.60  10-7 kmol-C3/kgcat∙s]  [47.3 kg/m3]  [ 3  10-5 m]  [1] / ([11.20 m/s]  Abc
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[0.0032 kmol/m3]) = 6.3  10-11 < 0.15  External diffusion is not limited.

(2) Weisz-Prater Criterion for Internal Diffusion (Fogler, p839)

If , then internal mass transfer is not limited
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-r’A(obs) = observed reaction rate, kmol-C3/kgcat·s

R = catalyst particle radius, m

ρc = solid catalyst density, kg/m3; [ρc,FER = 1493 kg/m3]

De = effective gas-phase diffusivity, m2/s [Fogler, p815]
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     =  where 
 cpABD

DAB = gas-phase diffusivity m2/s; = pellet porosity; =constriction factor; =tortuosity.  p c 

CAs = gas concentration of propane at the catalyst surface, kmol-C3/m3

= [1.60  10-7 kmol-C3/kgcat∙s]  [1493 kg/m3]  [3  10-5 m]2 / ([2.93  Ase

cobsA
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10-6 m2/s]  [9.67  10-6 kmol-C3/m3]) = 7.6  10-7 < 1  Internal diffusion is not limited.

(3) Mears Criterion for External (Interphase) Heat Transfer (Fogler, p842)

If , then external heat transfer is not limited
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ΔHr = Heat of reaction, kJ/mol

 = observed reaction rate, kmol-C3/kgcat·s'Ar

ρb = bulk density of catalyst bed, kg/m3 = ρc(1-ф) (ф= porosity or void fraction of packed bed)

R = catalyst particle radius, m

E = activation energy of the reaction, kJ/kmol

n = reaction order

ht = heat transfer coefficient, kJ/m2·K·s

Tb = bulk gas temperature, K

Rg = gas constant, 8.314 x 10-3 kJ/mol∙K

 = ([118.7 kJ/mol]  [1.60  10-7 kmol-C3/kgcat∙s]  [47.3 kg/m3]  [3  
g
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10-5 m]  [95 kJ/mol]) / ([40.92 kJ/m2.K.s]  [493.15 K]2  [8.314  10-3 kJ/mol.K]) = 3.1  

10-13 < 0.15  External heat transfer is not limited.
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(4) Mears Criterion for Combined Interphase and Intraparticle Heat and Mass 

Transport (Mears, 1971)

If , interphase and intraparticle heat and mass transport are  


nnDC
Rr

bbeAb

A

33.01
33.01' 2







not limited When 

; ; ;  ;  sgTR
E


bg

b TR
E

  
b

Aber
b T

CDH


 


 
bt

Ar

Th
RrH '


Abc

A

Ck
Rr '



γ = Arrhenius number; βb = heat generation function

λ = catalyst thermal conductivity, W/m∙K

χ = Damköhler number for interphase heat transport

ω = Damköhler number for interphase mass transport

 = observed reaction rate, kmol-C3/kgcat·s'Ar

R = catalyst particle radius, m

CAb = bulk gas concentration of propane, kmol/m3

De = effective gas-phase diffusivity, m2/s

 = ([1.60  10-7 kmol-C3/kgcat∙s]  [3  10-5m]2) / ([0.0032 kmol/m3]  [2.9  10-6 eAb

A
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m2/s]) = 1.5  10-12 < 3  Interphase and Intraparticle Heat and Mass Transport are not 

limited.

[S1] S.T. Oyama, X. Zhang, J. Lu, Y. Gu, T. Fujitani, J. Catal. 257 (2008) 1-4.
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Table S1. DME conversion and product distribution on the seed-derived FER zeolites 
synthesized by using various zeolite seedsa and commercial FER zeolite (CFER)

Selectivity (C-mol%)
Notation Conversion 

of DME (%)
Deactivation 
rate (%/h)b MA methanol HCc

Yield of 
MA (%)

FER 55.4 0.12 95.4 2.5 2.1 52.9
FER@FER 71.5 0.07 99.2 0.5 0.3 70.9
MOR@FER 42.5 0.23 95.2 2.8 2.0 40.5

ZSM-5@FER 30.7 0.14 89.7 4.7 5.6 27.5
USY@FER 33.8 0.13 94.2 3.9 1.9 31.8

CFER (@200 oC)d 10.9 - 86.8 11.1 2.1 9.5
CFER (@220 oC)d 14.8 - 80.5 15.3 4.2 11.9
CFER (@240 oC)d 15.5 - 91.4 6.3 2.3 14.2

aThe conversions and selectivities were presented using the averaged values at the reaction 
duration of 80 -100 h.
bThe deactivation rate (%/h) of the various zeolites coated with ferrierite was calculated by 
using the equation of [(maximum conversion of DME – conversion of DME at 100 
h)/(reaction duration), which was further normalized using total Bronsted acid sites.
cHC represents the formed hydrocarbons, mainly CH4, 
dThe CFER represents the commercial FER (Si/Al ratio = 10.4) zeolites, and the activity 
was measured at the reaction conditions of T = 220 - 240 °C, P = 1.0 MPa, and space 
velocity (SV) of 2000 L/(kgcat·h) using a mixed gas reactant of DME/CO/N2(mol%) = 
5/45/50.
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Table S2. Crystallographic parameters for the seed-derived FER zeolites analyzed by 
Rietveld refinement analysis from XRD dataa

sample a (Å) b (Å) c (Å) V (Å3) Rp(%) Rwp(%)

FER 18.864(3) 14.1017(17) 7.4511(9) 1982.1(4) 6.58 8.48
FER@FER 18.875(3) 14.1068(17) 7.4516(8) 1984.1(4) 6.72 8.79
MOR@FER 18.872(3) 14.1020(2) 7.4510(10) 1982.9(5) 6.35 8.27

ZSM-5@FER 18.856(4) 14.0990(2) 7.4516(10) 1981.0(5) 5.72 7.57
USY@FER 18.857(3) 14.1033(16) 7.4535(8) 1982.2(4) 6.09 7.83

aThe space group for FER zeolite is Immm
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Table S3. Bond valences for the seed-derived FER zeolites analyzed by Rietveld refinement 
analysis from XRD dataa 

Bond valence
sample

T1 (16) T2 (8) T3 (8) T4 (4)

FER 4.24(15) 3.91(18) 4.0(2) 4.3(3)
FER@FER 4.46(17) 3.76(19) 4.2(2) 4.2(3)
MOR@FER 4.31(17) 3.86(19) 3.9(2) 4.3(3)

ZSM-5@FER 4.27(16) 3.81(18) 4.2(2) 4.8(3)
USY@FER 4.27(14) 3.98(17) 4.1(19) 4.4(3)

Lattice energy per T atom (eV)
-125.17159 -125.2895731 -125.2865822 -125.4194282

aThe  and b are 1.624 and 0.389, respectively
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Figure S1. (A) N2 adsorption-desorption isotherms and (B) pore size distribution of the fresh 
seed-derived FER zeolites prepared by using various zeolite seeds
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Figure S2. (A) DME conversion and (B) MA selectivity with time on stream on the seed-
derived FER zeolites prepared by using various zeolite seeds
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Figure S3. DME conversion and product distribution with time on stream (h) on the various 
pristine zeolites out at T = 220 °C, P = 1.0 MPa, and space velocity (SV) of 2000 L/(kgcat·h) 

using a mixed gas reactant of DME/CO/N2(mol%) = 5/45/50
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Figure S4. FT-IR spectra of the adsorbed DME at 200 oC on the fresh seed-derived FER 
zeolites synthesized from various zeolite seeds
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Figure S5. FT-IR spectra of the adsorbed DME in the range of 1500 – 2000 cm-1 at different 
temperatures on the fresh seed-derived FER zeolites synthesized from various zeolite seeds
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Figure S6. FT-IR spectra of the adsorbed DME in the range of 3100 – 3900 cm-1 at different 
temperatures on the fresh seed-derived FER zeolites synthesized from various zeolite seeds



15

Figure S7. Correlations of methanol conversions to DME with the amount of weak acid sites 
(measured by NH3-TPD) on the solid-acid heterogeneous catalysts (mainly, Al2O3 and 

zeolites), where too larger amounts of acidic sites can also generate some coke precursors by 
keeping the dehydration activity constant
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Figure S8. Rietveld refinement plot of four different seed-derived FER zeolites such as (A) 
FER, (B) FER@FER, (C) MOR@FER, (D) ZSM-5@FER and (E) USY@FER
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Figure S8. Rietveld refinement plot of four different seed-derived FER zeolites such as (A) 
FER, (B) FER@FER, (C) MOR@FER, (D) ZSM-5@FER and (E) USY@FER (continued)
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Figure S8. Rietveld refinement plot of four different seed-derived FER zeolites such as (A) 
FER, (B) FER@FER, (C) MOR@FER, (D) ZSM-5@FER and (E) USY@FER (continued)
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Si deconvolution (%) and chemical shift of 29Si (ppm)
Si(2Al) Si(1Al) Si(0Al) Si(0Al) Sum (Si(0Al))Notation

-99 -105 -111 -115 (- 111 ~ - 115)
FER 4 22 55 25 80

FER@FER 5 12 75 7 82
MOR@FER 7 17 57 19 76

ZSM-5@FER 4 16 54 26 80
USY@FER 4 13 56 27 83

Figure S9. NMR spectra of the fresh seed-derived FER zeolites with 27Al MAS NMR spectra, 
29Si MAS NMR spectra and deconvoluted area (%) of Al-O-Si structures
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Figure S10. Equilibrium conversions of DME carbonylation to methyl acetate at the fixed 
pressure of 1.0 MPa with respect to reaction temperatures (100 – 400 oC) and CO/DME 

molar ratios (1 – 30)
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Figure S11. Variations of FT-IR spectra of the adsorbed methyl intermediates appeared at the 
bands of 2968 and 2949 cm-1 on the fresh FER and FER@FER through a successive 

adsorption experiment of DME followed by CO reactant at a fixed temperature of 220 oC 
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Scheme S1. Proposed reaction mechanisms on the highly crystalline FER@FER


