### **Supporting Information**

# In situ generated catalyst: Copper (II) oxide and Copper (I) supported on Ca<sub>2</sub>Fe<sub>2</sub>O<sub>5</sub> for CO oxidation

Bartosz Penkala<sup>a,b</sup>, Suresh Gatla<sup>c</sup>, Daniel Aubert<sup>a</sup>, Monica Ceretti<sup>b</sup>, Caroline Tardivat<sup>a</sup>, , and Werner Paulus<sup>\*b</sup> and Helena Kaper<sup>\*a</sup>

<sup>a</sup> Ceramic Synthesis and Functionalization Laboratory, UMR 3080, CNRS/Saint-Gobain CREE, 550, Ave Alphonse Jauffret, 84306 Cavaillon, France

<sup>b</sup>. Institut Charles Gerhardt Montpellier, UMR 5253 CNRS-UM-ENSCM, Université de Montpellier, Place Eugène Bataillon, F-34095 Montpellier Cedex 5, France

° ESRF – The European Synchrotron, 71, avenue des Martyrs, 38000 Grenoble, France

\*Correspondence: helena.kaper@saint-gobain.com and werner.paulus@univ-montp2.fr.

### Contents

| • | CO oxidation curves of reference samples                                                      | 2       |
|---|-----------------------------------------------------------------------------------------------|---------|
| • | Stability test of impregnated and one pot sample                                              | 2       |
| • | Surface properties derived from XPS                                                           | 3       |
| • | Lattice Parameter of one pot samples                                                          | 3       |
| • | XRD pattern of one pot samples as-synthesized and after reaction                              | 4       |
| • | X-Ray analysis of as-synthesized 40Cu-CFO_OP and after reaction, compared reference compounds | to<br>7 |
| • | Lattice Parameter of impregnated samples                                                      | 7       |
| • | Figure SI 5 XRD pattern of impregnated samples as-synthesized and after reaction              | 9       |
| • | Fourier Transformation of the EXAFS signal of 30Cu-CFO_OP at the Cu edge                      | 11      |
| • | Fourier Transformation of the EXAFS signal of 30Cu-CFO_OP at the Fe-edge                      | 12      |
| ٠ | Fourier Transformation of the EXAFS signal of 40Cu-CFO_OP at the Cu-edge                      | 13      |
| • | Fourier Transformation of the EXAFS signal of 40Cu-CFO_OP at the Fe-edge                      | 13      |

### CO oxidation curves of reference samples

Fig. Sl1 shows the CO oxidation curves of pure CuO prepared the same manner as the supported CuO samples and CuO deposited on  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>. For comparison, the best impregnated and one-pot catalysts are added (40Cu\_CFO\_OP\_H<sub>2</sub> and 40Cu\_CFO\_IP). The graphs shows that the CuO supported on CFO converts CO at lower temperatures than unsupported CuO (SSA: 1m<sup>2</sup>/g) or  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> (156 m<sup>2</sup>/g) as support.



Fig. SI 1: CO oxidation light-off curves of CuO supported on Al<sub>2</sub>O<sub>3</sub> and Ca<sub>2</sub>Fe<sub>2</sub>O<sub>5</sub>.

### Stability test of impregnated and one pot sample

Fig. SI 2 shows the CO conversion for 40Cu\_CFO\_IP and 40Cu\_CFO\_OP after hydrogen pretreatment and one light-off curve at 200°C for 24h. The test conditions were 20 mg of sample diluted in SiC,



**Fig. SI 2:** Stability test of 40CFO\_0P and 40CFO\_IP. Test conditions: 20 mg of sample diluted in 300 mg of SiC, pretreatment at 300°C for 2h under 40%H<sub>2</sub>/He, one light-off curve (2000ppm, 10000ppm 0<sub>2</sub>) and isotherm at 200°C, 2000 ppm of CO and 10000 ppm of O<sub>2</sub>.

### Surface properties derived from XPS

Table SI 1

|                       |                     | surface   |                                  |  |  |  |  |
|-----------------------|---------------------|-----------|----------------------------------|--|--|--|--|
|                       | composition         |           |                                  |  |  |  |  |
| Catalyst              | Cu2p <sub>3/2</sub> | (at% Cu)ª | I <sub>ss</sub> /I <sub>pp</sub> |  |  |  |  |
| 40_CFO_IP             | 933.5               | 24        | 0.45                             |  |  |  |  |
| 40_CFO_IP after CO ox | 933.3               | 23        | 0.33                             |  |  |  |  |
| 40_CFO_OP             | 933.3               | 19        | 0.33                             |  |  |  |  |
| 40_CFO_OP_after CO ox | 933.5               | 16        | 0.41                             |  |  |  |  |

<sup>a</sup>The surface compositions of Cu was calculating omitting C and O contributions, as the surface is polluted with carbonates. These values have thus a mere comparative purpose and are not absolute values.

### Lattice Parameter of one pot samples

**Table SI 2** Refined parameters corresponding to the XRD data presented in **Fig. 4** for xCu-CFO\_OP, (where 5<x<50) catalysts as synthetized and after CO oxidation.

| Phase             | Space Group | a [ Å]     | b [ Å]      | c [ Å]      | vol [Å <sup>3</sup> ] | Phase<br>fraction[%] | $\chi^2$ |
|-------------------|-------------|------------|-------------|-------------|-----------------------|----------------------|----------|
| CFO               |             |            |             |             |                       |                      |          |
| $Ca_2Fe_2O_5$     | P n m a     | 5.4330(5)  | 14.7800(20) | 5.6049(5)   | 450.090(75)           | 100(0)               | 1.22     |
| 5 Cu-CFO_OP       |             |            |             |             |                       |                      |          |
| $Ca_2Fe_2O_5$     | P n m a     | 5.4205(8)  | 14.7898(20) | 5.5971(7)   | 448.714(107)          | 97.96(80)            | 1.34     |
| CaCO <sub>3</sub> | R -3 c      | 4.9816 (9) | 4.9816 (9)  | 17.1023(41) | 368.101(134)          | 2.04(31)             |          |
| 5 Cu-CFO OP H2    | 2 CO        |            |             |             |                       |                      |          |

| $Ca_2Fe_2O_5$                                  | P n m a | 5.4231(15)    | 14.7830(30)   | 5.5972(14)   | 448.758(198) | 97.19 (90)  | 1.21 |
|------------------------------------------------|---------|---------------|---------------|--------------|--------------|-------------|------|
| CaCO <sub>3</sub>                              | R -3 c  | 4.9897(9)     | 4.9897(9)     | 17.0947(35)  | 368.583(117) | 2.81 (39)   |      |
| 10 Cu-CFO_OP                                   |         |               |               |              |              |             |      |
| $Ca_2Fe_2O_5$                                  | P n m a | 5.4167(8)     | 14.7955(23)   | 5.5921(9)    | 448.166(119) | 98.21(89)   | 1.46 |
| CaCO <sub>3</sub>                              | R -3 c  | 4.9854(7)     | 4.9854(7)     | 17.0894(32   | 368.431(134) | 1.79(85)    |      |
| 10 Cu-CFO_OP H                                 | 2_CO    |               |               |              |              |             |      |
| $Ca_2Fe_2O_5$                                  | P n m a | 5.42634(4)    | 14.8002(15)   | 5.6018(9)    | 449.893(61)  | 96.98(80)   | 1.19 |
| CaCO <sub>3</sub>                              | R -3 c  | 4.9889(5)     | 4.9889(5)     | 17.0960(21   | 368.431(134) | 3.02(19)    |      |
| 20 Cu-CFO_OP                                   |         |               |               |              |              |             |      |
| $Ca_2Fe_2O_5$                                  | P n m a | 5.4154(3)     | 14.8248(8)    | 5.5938(3)    | 449.085(41)  | 82.46(68)   |      |
| CaCO <sub>3</sub>                              | R -3 c  | 4.9809(9)     | 4.9809(9)     | 17.1352(35)  | 368.165(117) | 10.54(39)   | 1.16 |
| CuO                                            | C 2/c   | 4.6912(14)    | 3.4248(8)     | 5.1367(16)   | 81.397(41)   | 6.99(25)    |      |
| 20 Cu-CFO_OP H                                 | 2_CO    |               |               |              |              |             |      |
| Ca <sub>2</sub> Fe <sub>2</sub> O <sub>5</sub> | P n m a | 5.4135(2)     | 14.7939(53)   | 5.5912(20)   | 447.786(280) | 73.80(1.23) |      |
| CaCO <sub>3</sub>                              | R -3 c  | 4.9795 (10)   | 4.9795(10)    | 17.0791(38)  | 366.753(133) | 17.57(65)   | 1.16 |
| CuO                                            | C 2/c   | 4.6867(74)    | 3.4285(45)    | 5.1285(83)   | 81.269(211)  | 3.95(25)    |      |
| 30 Cu-CFO_OP                                   |         |               |               |              |              |             |      |
| Ca <sub>2</sub> Fe <sub>2</sub> O <sub>5</sub> | P n m a | 5.4141 (5)    | 14.8022(14)   | 5.5900(5)    | 447.986(75)  | 52.02(9)    |      |
| CaCO <sub>3</sub>                              | R -3 c  | 4.9862(5)     | 4.9862(5)     | 17.1147(21)  | 368.514(71)  | 35.54(48)   | 2.70 |
| CuO                                            | C 2/c   | 4.6932 (15)   | 3.4277(8)     | 5.1225(13)   | 81.200(37)   | 12.44(22)   |      |
| 30 Cu-CFO_OP H                                 | 2_CO    |               |               |              |              |             |      |
| Ca <sub>2</sub> Fe <sub>2</sub> O <sub>5</sub> | P n m a | 5.4344(19)    | 14.82448(535) | 5.6091(20)   | 451.884(280) | 63.24(1.23) |      |
| CaCO <sub>3</sub>                              | R -3 c  | 4.9833(10)    | 4.9833(10)    | 17.1079(38)  | 367.645(133) | 30.44(65)   | 1.36 |
| CuO                                            | C 2/c   | 4.6913(74)    | 3.4290(46)    | 5.1310 (83)  | 81.817(211)  | 6.32(25)    |      |
| 40 Cu-CFO_OP                                   |         |               |               |              |              |             |      |
| $Ca_2Fe_2O_5$                                  | P n m a | 5.4143(8)     | 14.8247(22)   | 5.5922(8)    | 448.865(114) | 50.95(32)   |      |
| CaCO <sub>3</sub>                              | R -3 c  | 4.9872(6)     | 4.9872(6)     | 17.1230 (22) | 368.830(78)  | 31.90(32)   | 1.92 |
| CuO                                            | C 2/c   | 4.68828 (101) | 3.42443(73)   | 5.14093(104) | 81.412(30)   | 17.15(19)   |      |
| 40 Cu-CFO_OP H                                 | 2_CO    |               |               |              |              |             |      |
| $Ca_2Fe_2O_5$                                  | P n m a | 5.4251(4)     | 14.8102(11)   | 5.6035(4)    | 450.113(60)  | 46.64(90)   |      |
| CaCO <sub>3</sub>                              | R -3 c  | 4.9887(3)     | 4.9887(3)     | 17.1107(15)  | 368.536(50)  | 40.12(90)   | 1.72 |
| CuO                                            | C 2/c   | 4.6839(72)    | 3.4237(39)    | 5.1405(82)   | 81.501(158)  | 13.2490)    |      |
| 50 Cu-CFO_OP                                   |         |               |               |              |              |             |      |
| Ca <sub>2</sub> Fe <sub>2</sub> O <sub>5</sub> | P n m a | 5.4165(3)     | 14.8386(10)   | 5.5927(4)    | 449.506(52)  | 48.54(42)   |      |
| CaCO <sub>3</sub>                              | R -3 c  | 4.9877(4)     | 4.9877(3)     | 17.1182(15)  | 368.797(49)  | 30.13(31)   | 1.92 |
| CuO                                            | C 2/c   | 4.6901(7)     | 3.4221(5)     | 5.1345(7)    | 81.281(20)   | 21.33(27)   |      |

### XRD pattern of one pot samples as-synthesized and after reaction















**Figure SI 3** Observed, calculated and difference XRD patterns of: **A.** 1Cu-CFO\_OP; **B.** 1Cu-CFO\_OP after H<sub>2</sub> treatment and CO oxidation; **C.** 5Cu-CFO\_OP; **D.** 5Cu-CFO\_OP after H<sub>2</sub> treatment and CO oxidation; **E.** 10Cu-CFO\_OP; **F.** 10Cu-CFO\_OP after H<sub>2</sub> treatment and CO oxidation; **G.** 20Cu-CFO\_OP; **H.** 20Cu-CFO\_OP after H<sub>2</sub> treatment and CO oxidation, **I.** 30Cu-CFO\_OP; **J.** 30Cu-CFO\_OP after H<sub>2</sub> treatment and CO oxidation; **K.** 40Cu-CFO\_OP; **L.** 40Cu-CFO\_OP after H<sub>2</sub> treatment and CO oxidation; **M.** 50Cu-CFO\_OP; results were refined in the *Pnma* space group in profile matching mode

together with appropriate space group describing secondary phase. Vertical bars are related to the calculated Bragg reflection position. Refined parameters are given in the Table S1.



## X-Ray analysis of as-synthesized 4oCu-CFO\_OP and after reaction, compared to reference compounds

**Figure SI 4A.** X-Ray diffraction data in the 20 region between  $32^{\circ}$  and  $40^{\circ}$  for as synthetized 40Cu-CFO\_OP (blue line) and 40Cu-CFO\_OP after H<sub>2</sub> treatment at 300°C followed by catalytic test at 400°C (black line). Grey boxes highlight the most intensive reflections belonging to the CuO phase (002) and (111)/(200) together with (111) reflection belonging to the Cu<sub>2</sub>O phase; **B.** Observed XRD patterns for as synthetized 40Cu-CFO\_OP (light grey) and 40Cu-CFO\_OP after H<sub>2</sub> treatment at 300°C followed by catalytic test at 400°C (dark grey), stacked together with simulated XRD profile for Cu (green line), Cu<sub>2</sub>O (blue line) and CuO (red line) phases. Simulations were performed in the Full Prof Package using profile broadening function determined for CuO phase in as-synthetized sample;

#### Lattice Parameter of impregnated samples

**Table SI 3**. Refined parameters corresponding to the XRD data presented in **Fig. 2** for xCu-CFO\_IP (where 10<x<40), catalysts as synthetized and after CO oxidation.

| Phase             | Space G | Group a [ Å] | b [ Å]      | c [ Å]      | vol [Å3]     | Phase<br>fraction[%] |  |
|-------------------|---------|--------------|-------------|-------------|--------------|----------------------|--|
| 10 Cu-CFO_IP      |         |              |             |             |              |                      |  |
| $Ca_2Fe_2O_5$     | P n m a | 5.42695(8)   | 14.7714(20) | 5.6016(7)   | 449.037(107) | 86.43(3.41)          |  |
| CaCO <sub>3</sub> | R -3 c  | 4.9978 (9)   | 4.9978 (9)  | 17.0583(41) | 368.998(134) | 9.41(66)             |  |
| CuO               | C 2/c   | 4.6853(14)   | 3.4219(8)   | 5.1122(16)  | 81.307(41)   | 4.17(39)             |  |

| 10 Cu-CFO_IP _C   | CO      |             |               |             |                 |               |      |
|-------------------|---------|-------------|---------------|-------------|-----------------|---------------|------|
| $Ca_2Fe_2O_5$     | P n m a | 5.4261(15)  | 14.7723(30)   | 5.6017 (14) | 448.758(198)    | 86.24 (3.90)  |      |
| CaCO <sub>3</sub> | R -3 c  | 4.9978 (9)  | 4.9978 (9)    | 17.0583(41) | 368.998(134)    | 9.63(66)      |      |
| CuO               | C 2/c   | 4.6853(14)  | 3.4219(8)     | 5.1122(16)  | 81.307(41)      | 4.13(39)      |      |
| 10 Cu-CFO_IP_H    | 12_CO   |             |               |             |                 |               |      |
| $Ca_2Fe_2O_5$     | P n m a | 5.4281 (8)  | 14.7722(23)   | 5.6021(9)   | 449.202(119)    | 87.65(3.71)   |      |
| CaCO <sub>3</sub> | R -3 c  | 4.9978 (9)  | 4.9978 (9)    | 17.0583(41) | 368.431(134)    | 9.77( 0.72)   |      |
| CuO               | C 2/c   | 4.6853(14)  | 3.4219(8)     | 5.1122(16)  | 81.307(41)      | 2.58(0.39)    |      |
| 30 Cu-CF_IP       |         |             |               |             |                 |               |      |
| $Ca_2Fe_2O_5$     | P n m a | 5.4260 (5)  | 14.7704(8)    | 5.5954(3)   | 448.436( 0.080) | 85.16(3.53)   |      |
| CaCO <sub>3</sub> | R -3 c  | 4.9978 (9)  | 4.9978 (9)    | 17.0583(41) | 368.431(134)    | 3.03(0.55)    |      |
| CuO               | C 2/c   | 4.6853(14)  | 3.4219(8)     | 5.1122(16)  | 81.307(41)      | 11.81( 0.60)) |      |
| 30 Cu-CFO_IP_C    | 0       |             |               |             |                 |               |      |
| $Ca_2Fe_2O_5$     | P n m a | 5.4250(2)   | 14.7726(53)   | 5.5958(20)  | 447.786(280)    | 86.49(3.69)   |      |
| CaCO <sub>3</sub> | R -3 c  | 4.9978 (9)  | 4.9978 (9)    | 17.0583(41) | 368.431(134)    | 1.46( 0.54)   |      |
| CuO               | C 2/c   | 4.6853(14)  | 3.4219(8)     | 5.1122(16)  | 81.307(41)      | 12.05(25)     |      |
| 30 Cu-CFO_IP_H    | 12_CO   |             |               |             |                 |               |      |
| $Ca_2Fe_2O_5$     | P n m a | 5.4278 (5)  | 14.7704(14)   | 5.6017(5)   | 449.095(75)     | 86.49(3.74)   |      |
| CaCO <sub>3</sub> | R -3 c  | 4.9978 (9)  | 4.9978 (9)    | 17.0583(41) | 368.431(134)    | 10.79( 0.78)  |      |
| CuO               | C 2/c   | 4.6853(14)  | 3.4219(8)     | 5.1122(16)  | 81.307(41)      | 2.72(0.40)    |      |
| 40 Cu-CFO_IP      |         |             |               |             |                 |               |      |
| $Ca_2Fe_2O_5$     | P n m a | 5.4242 (19) | 14.7755(19)   | 5.5957(20)  | 448.470( 0.095) | 78.83(1.29)   |      |
| CaCO <sub>3</sub> | R -3 c  | 4.9978 (9)  | 4.9978 (9)    | 17.0583(41) | 368.431(134)    | 4.51(0.05)    |      |
| CuO               | C 2/c   | 4.6853(14)  | 3.4219(8)     | 5.1122(16)  | 81.307(41)      | 16.66( 0.17)  |      |
| 40 Cu-CFO_IP_C    | 0       |             |               |             |                 |               |      |
| $Ca_2Fe_2O_5$     | P n m a | 5.4276 (8)  | 14.7746(22)   | 5.5992(8)   | 449.009114)     | 76.20(2.01)   |      |
| CaCO <sub>3</sub> | R -3 c  | 4.9978 (9)  | 4.9978 (9)    | 17.0583(41) | 368.431(134)    | 5.61(0.72)    |      |
| CuO               | C 2/c   | 4.6853(14)  | 3.4219(8)     | 5.1122(16)  | 81.307(41)      | 18.19(1.24)   |      |
| 40 Cu-CFO_IP_H    | 12_CO   |             |               |             |                 |               |      |
| $Ca_2Fe_2O_5$     | P n m a | 5.4285(4)   | 14.7711(11)   | 5.6005(4)   | 449.078( 0.111) | 78.71(1.56)   |      |
| CaCO <sub>3</sub> | R -3 c  | 4.9978 (9)  | 4.9978 (9)    | 17.0583(41) | 368.431(134)    | 5.33( 0.60)   |      |
| CuO               | C 2/c   | 4.6853(14)  | 3.4219(8)     | 5.1122(16)  | 81.307(41)      | 15.96( 0.82)  |      |
| CuO               |         |             |               |             |                 |               |      |
| CuO               | C 2/c   | 4.69151(31) | 3.43179(26)   | 5.13881(32) | 81.609(10)      | 100(0)        | 6.04 |
| CFO               |         |             |               |             |                 |               |      |
| $Ca_2Fe_2O_5$     | P n m a | 5.43302(52) | 14.78038(144) | 5.60496(54) | 450.090(75)     | 100(0)        | 1.22 |
|                   |         |             |               |             |                 |               |      |













### Figure SI 5 XRD pattern of impregnated samples as-synthesized and after reaction



**Figure SI 5** Observed, calculated and difference XRD patterns of: **A.** 10Cu-CFO\_IP; **B.** 10Cu-CFO\_IP after H<sub>2</sub> treatment and CO oxidation; **C.** 30Cu-CFO\_IP; **D.** 30Cu-CFO\_IP after H<sub>2</sub> treatment and CO oxidation; **E.** 40Cu-CFO\_IP; **F.** 40Cu-CFO\_IP after H<sub>2</sub> treatment and CO oxidation; treatment and CO oxidation; **G.** as-synthesized pure  $Ca_2Fe_2O_5$  **H.** pure CuO. Results were refined in the *Pnma* space group in profile matching mode together with appropriate space group describing secondary phase. Vertical bars are related to the calculated Bragg reflection position. Refined parameters are given in the Table SI 3.

#### **EXAFS fit parameters**

| T (°C)               | 30Cu-CFO_OP                                    | Bond              | Site            | $S_0^2$                     | $\Delta E_0 (eV)$ | R (Å)           | $\sigma^2(\text{\AA}^2)$     | R <sub>Factor</sub> |
|----------------------|------------------------------------------------|-------------------|-----------------|-----------------------------|-------------------|-----------------|------------------------------|---------------------|
|                      | CuO                                            | Cu-O              | (1)             | 1.24±0.13                   | -0.10±1.96        | 1.977±<br>0.002 | 0.011±<br>0.002              | 0.010               |
| RT/Air               |                                                | Fe-O <sub>1</sub> | $O_{h1}$        | 0.45±0.11                   | $-4.25 \pm 3.96$  | 1.968±0.017     | 0.004±0.002                  | 0.010               |
|                      |                                                | Fe-O <sub>2</sub> | O <sub>h2</sub> | 0.45±0.11                   | -4.25±3.96        | 2.115±0.017     | 0.005±0.002                  | 0.010               |
|                      | $Ca_2Fe_2O_5$                                  | Fe-O <sub>2</sub> | $T_{d1}$        | 0.45±0.11                   | -4.25±3.96        | 1.863±0.013     | 0.004±0.002                  | 0.010               |
|                      |                                                | Fe-O <sub>3</sub> | $T_{d2}$        | 0.45±0.11                   | -4.25±3.96        | 1.904±0.013     | 0.004±0.002                  | 0.010               |
|                      | Cu                                             | Cu-Cu             | (1)             | 0.83±0.09                   | 3.63±0.73         | 2.534±0.003     | 0.015±0.001                  | 0.011               |
|                      |                                                | Fe-O <sub>1</sub> | $O_{h1}$        | 0.47±0.14                   | -5.01±4.44        | 1.968±0.017     | 0.006±0.003                  | 0.014               |
| 300°C/H <sub>2</sub> | Ca <sub>2</sub> Fe <sub>2</sub> O <sub>5</sub> | Fe-O <sub>2</sub> | $O_{h2}$        | 0.47±0.14                   | -5.01±4.44        | 2.115±0.017     | $0.008 \pm 0.007$            | 0.014               |
|                      |                                                | Fe-O <sub>2</sub> | $T_{d1}$        | 0.47±0.14                   | -5.01±4.44        | 1.863±0.024     | 0.006±0.003                  | 0.014               |
|                      |                                                | Fe-O <sub>3</sub> | $T_{d2}$        | 0.47±0.14                   | -5.01±4.44        | 1.904±0.024     | 0.006±0.003                  | 0.014               |
|                      | Cu <sub>2</sub> O                              | Cu-O              | (1)             | 0.27±0.05                   | -0.63±2.01        | 1.864±0.013     | 0.001±0.002                  | 0.008               |
|                      | Ca <sub>2</sub> Fe <sub>2</sub> O <sub>5</sub> | Fe-O <sub>1</sub> | $O_{h1}$        | 0.45±0.13                   | -3.09±4.31        | 1.968±0.021     | 0.005±0.003                  | 0.002               |
| 200°C/               |                                                | Fe-O <sub>2</sub> | $O_{h2}$        | 0.45±0.13                   | -3.09±4.31        | 2.115±0.021     | 0.004±0.005                  | 0.002               |
| 0/02                 |                                                | Fe-O <sub>2</sub> | $T_{d1}$        | 0.45±0.13                   | -3.09±4.31        | 1.863±0.013     | 0.018±0.003                  | 0.002               |
|                      |                                                | Fe-O <sub>3</sub> | $T_{d2}$        | 0.45±0.13                   | -3.09±4.31        | 1.904±0.013     | 0.018±0.003                  | 0.002               |
| T (°C)               | 40Cu-CFO_OP                                    | Bond              | Site            | S <sub>0</sub> <sup>2</sup> | $\Delta E_0(eV)$  | R (Å)           | $\sigma^{2}(\text{\AA}^{2})$ | R <sub>Factor</sub> |
|                      | CuO                                            | Cu-O              | (1)             | 1.27±0.11                   | -1.12±0.57        | 1.961±0.009     | 0.010±0.002                  | 0.007               |
|                      |                                                | Fe-O <sub>1</sub> | $O_{h1}$        | 0.45±0.12                   | -1.98±4.68        | 1.968±0.018     | 0.005±0.002                  | 0.002               |
| RT/Air               |                                                | Fe-O <sub>2</sub> | $O_{h2}$        | 0.45±0.12                   | -1.98±4.68        | 2.115±0.018     | $0.005 \pm 0.008$            | 0.002               |
|                      | $Ca_2Fe_2O_5$                                  | Fe-O <sub>2</sub> | $T_{d1}$        | 0.45±0.12                   | -1.98±4.68        | 1.863±0.017     | $0.005 \pm 0.002$            | 0.002               |
|                      |                                                | Fe-O <sub>3</sub> | $T_{d2}$        | 0.45±0.12                   | -1.98±4.68        | 1.904±0.017     | 0.005±0.002                  | 0.002               |

**Table SI 4** EXAFS fit parameters with  $S_0^2$ -passive electron reduction factor,  $\Delta E_0$ -energy shift, R-internuclear distance,  $\sigma^2$ -mean squared displacement.

| 300°C/H <sub>2</sub>        | Cu                                             | Cu-Cu             | (1)             | 0.83±0.09 | 3.63±0.73  | 2.534±0.002 | 0.014±0.001 | 0.011 |
|-----------------------------|------------------------------------------------|-------------------|-----------------|-----------|------------|-------------|-------------|-------|
|                             | Ca <sub>2</sub> Fe <sub>2</sub> O <sub>5</sub> | Fe-O <sub>1</sub> | O <sub>h1</sub> | 0.47±0.17 | -4.29±5.27 | 1.968±0.021 | 0.006±0.003 | 0.001 |
|                             |                                                | Fe-O <sub>2</sub> | O <sub>h2</sub> | 0.47±0.17 | -4.29±5.27 | 2.115±0.021 | 0.010±0.009 | 0.001 |
|                             |                                                | Fe-O <sub>2</sub> | $T_{d1}$        | 0.47±0.17 | -4.29±5.27 | 1.863±0.026 | 0.006±0.003 | 0.001 |
|                             |                                                | Fe-O <sub>3</sub> | $T_{d2}$        | 0.47±0.17 | -4.29±5.27 | 1.904±0.026 | 0.006±0.003 | 0.001 |
| 200°C/<br>CO/O <sub>2</sub> | Cu <sub>2</sub> O                              | Cu-O              | (1)             | 0.27±0.05 | -0.02±1.81 | 1.851±0.004 | 0.001±0.002 | 0.068 |
|                             | Ca <sub>2</sub> Fe <sub>2</sub> O <sub>5</sub> | Fe-O <sub>1</sub> | $O_{h1}$        | 0.46±0.13 | -3.80±4.23 | 1.968±0.015 | 0.004±0.002 | 0.001 |
|                             |                                                | Fe-O <sub>2</sub> | O <sub>h2</sub> | 0.46±0.13 | -3.80±4.23 | 2.115±0.015 | 0.004±0.005 | 0.001 |
|                             |                                                | Fe-O <sub>2</sub> | $T_{d1}$        | 0.46±0.13 | -3.80±4.23 | 1.863±0.021 | 0.004±0.002 | 0.001 |
|                             |                                                | Fe-O <sub>3</sub> | T <sub>d2</sub> | 0.46±0.13 | -3.80±4.23 | 1.904±0.021 | 0.004±0.002 | 0.001 |

### Fourier Transformation of the EXAFS signal of 3oCu-CFO\_OP at the Cu edge



**Figure SI 6** Experimental  $k^3$ -weighted FT of the  $\xi(k)$  function together with the best fit for 30Cu-CFO\_OP measured at the Cu K-edge under **A.** Air at RT, **B.** H<sub>2</sub> at 300°C, **C.** He at RT and **D.** CO/O<sub>2</sub> at 200°C.



Fourier Transformation of the EXAFS signal of 3oCu-CFO\_OP at the Fe-edge

**Figure SI 7** Experimental  $k^3$ -weighted FT of the  $\xi(k)$  function together with the best fit for 30Cu-CFO\_OP measured at the Fe K-edge under **A.** Air at RT, **B.** H<sub>2</sub> at 300°C, **C.** He at RT and **D.** CO/O<sub>2</sub> at 200°C.



Fourier Transformation of the EXAFS signal of 4oCu-CFO\_OP at the Cu-edge

**Figure SI 8** Experimental  $k^3$ -weighted FT of the  $\xi(k)$  function together with the best fit for 40Cu-CFO\_OP measured at the Cu K-edge under A. Air at RT, B. H<sub>2</sub> at 300°C, C. He at RT and D. CO/O<sub>2</sub> at 200°C.



### Fourier Transformation of the EXAFS signal of 4oCu-CFO\_OP at the Fe-edge



**Figure SI 9** Experimental  $k^3$ -weighted FT of the  $\xi(k)$  function together with the best fit for 40Cu-CFO\_OP measured at the Fe K-edge under A. Air at RT, B. H<sub>2</sub> at 300°C, C. He at RT and D. CO/O<sub>2</sub> at 200°C.



**Figure SI 10** Experimental  $k^3$ -weighted FT of the  $\xi(k)$  function together with the best fit for 40Cu-CFO\_OP measured in the Fe K-edge under: **A.** Air at RT; **B.** H<sub>2</sub> at 300°C; **C.** He at RT; **D.** CO/O<sub>2</sub> at 200°C.



**Figure SI 11** Experimental  $k^3$ -weighted FT of the  $\xi(k)$  function together with the best fit for 12Cu-CFO\_OP measured in the Fe K-edge under: **A.** Air at RT; **B.** H<sub>2</sub> at 300°C; **C.** He at RT; **D.** CO/O<sub>2</sub> at 200°C.