Supporting Information

Efficient spatial charge separation and transfer in ultrathin g-C$_3$N$_4$ nanosheets modified with Cu$_2$MoS$_4$ as noble-metal-free co-catalyst for superior visible-light-driven photocatalytic water splitting

Yajun Zou, Jian-Wen Shi, Dandan Ma, Zhaoyang Fan, Chi He, Linhao Cheng, Diankun Sun, Jun Li, Zeyan Wang, Chunming Niu

a Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China

b Department of Environmental Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China

c State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China

Corresponding author:

Jian-Wen Shi, E-mail: jianwen.shi@mail.xjtu.edu.cn
1. Experimental section

Preparation of CuS/g-C$_3$N$_4$ nanosheets and MoS$_2$/g-C$_3$N$_4$ nanosheets

CuS/g-C$_3$N$_4$ nanosheets (CuS/CN) were prepared via a two-step route. Firstly, 0.48 g of Cu(NO$_3$)$_2$·3H$_2$O was dissolved in 30 mL of deionized water to form a blue solution. At the same time, 0.60 g of thioacetamide (TAA) was dissolved in 10 mL deionized water to form a colorless solution. Subsequently, the TAA solution was injected into the above blue solution, and the resultant mixed solution was then maintained at 60 °C for 10 min. The generated precipitate was collected by centrifugation and washed with deionized water and ethanol for several times, and then was dried in an oven at 60 °C overnight, resulting in the pure CuS. Secondly, 13 mg of CuS and 100 mg of g-C$_3$N$_4$ nanosheets were added to 20 mL of ethanol. The resultant suspension was ultrasonicated for 1 h and then stirred for 12 h. Subsequently, the precipitate was collected by centrifugation and washed with deionized water and ethanol for several times. After being dried in an oven at 60 °C overnight, the final CuS/CN product was obtained.

MoS$_2$/g-C$_3$N$_4$ nanosheets (MoS$_2$/CN) were synthesized via a two-step route. Firstly, 0.242 g of Na$_2$MoO$_4$·2H$_2$O and 0.381 g of thiourea were dissolved in 30 mL of deionized water. The resultant solution was transferred to a 50 mL Teflon-lined autoclave and maintained at 220 °C for 24 h. The resulting samples were separated by centrifuging and washed with deionized water and ethanol for several times, and then dried in an oven at 60 °C overnight, resulting in the pure MoS$_2$ sample. Secondly, 13 mg of MoS$_2$ and 100 mg of g-C$_3$N$_4$ nanosheets were added to 20 mL of ethanol and the suspension was ultrasonicated for 1 h and then stirred for 12 h. The precipitate was collected by centrifugation and washed with deionized water and ethanol for several times. After being dried in an oven at 60 °C overnight, the final MoS$_2$/CN product was obtained.
2. The calculation of apparent quantum efficiency

The apparent quantum efficiency (AQE) was analyzed at different wavelengths (400, 450, 475, 500 and 550 nm, ± 10 nm) under the 300 W Xenon lamp irradiation. The other experimental conditions are similar to the photocatalytic hydrogen evolution measurement as described before.

The light intensity was obtained with an optical power meter (CEL-NP2000, CEAULIGHT, Beijing). For example, if 400 nm is used, the average light intensity is 12.29 mW/cm\(^2\). The irradiation area was 28.3 cm\(^2\) (3 cm radius). The number of incident photons \((N)\) is \(7.56 \times 10^{21}\) calculated by equation (1). The amount of H\(_2\) molecules generated for 3 h are \(~25.7\) \(\mu\)mol. The AQE was then calculated in equation (2).

\[
N = \frac{E\lambda}{hc} = \frac{12.29 \times 28.3 \times 10^{-3} \times 3 \times 3600 \times 400 \times 10^{-9}}{6.626 \times 10^{-34} \times 3 \times 10^8} = 7.56 \times 10^{21} \quad (1)
\]

\[
AQE = \frac{\text{the number of reacted electrons}}{\text{the number of incident photons}} \times 100\% \\
= \frac{2 \times \text{the number of evolved H}_2 \text{ molecules}}{N} \times 100\% \\
= \frac{2 \times 6.02 \times 10^{23} \times 25.7 \times 10^{-6}}{7.56 \times 10^{21}} \times 100\% = 0.41\% \quad (2)
\]
3. The calculation of solar-to-hydrogen energy conversion efficiency

The solar-to-hydrogen energy conversion efficiencies (STH) under visible-light and full-spectrum-light illumination were evaluated respectively by using a 300 W Xenon arc lamp (PLS-SXE300) with or without a 420 nm cutoff filter as light source (25.8 and 70.0 mW/cm², respectively) and CNMS-2 sample as the catalyst (10 mg catalyst in 20 mL deionized water). The light intensity was obtained with an optical power meter (CEL-NP2000, CEAULIGHT, Beijing). After 4 h of visible-light illumination, the total incident power over the 28.3 cm² irradiation area (3 cm radius) was:

\[P_{\text{Solar}} = 25.8 \times 28.3 \times 10^{-3} = 0.73 \text{ W} \]

The total input energy in 4 hours was:

\[E_{\text{Solar}} = 0.73 \times 4 \times 3600 = 1.051 \times 10^4 \text{ J} \]

During the photocatalytic reaction under visible-light illumination, 89.97 μmol H₂ was detected by gas chromatography (GC), which indicated that the energy generated by water splitting was:

\[E_{\text{Hydrogen}} = 89.97 \times 10^{-6} \times 6.02 \times 10^{23} \times 2.46 \times 1.609 \times 10^{-19} = 21.4 \text{ J}; \text{ 2.46 eV is the free energy of water splitting.} \]

The STH under visible-light illumination was determined to be:

\[\text{STH} = \frac{E_{\text{Hydrogen}}}{E_{\text{Solar}}} = \frac{21.4}{1.051 \times 10^4} = 0.20\% \]

After 4 h of full-spectrum-light illumination, the total incident power over the 28.3 cm² irradiation area (3 cm radius) was:

\[P_{\text{Solar}} = 70.0 \times 28.3 \times 10^{-3} = 1.98 \text{ W} \]

The total input energy in 4 hours was:

\[E_{\text{Solar}} = 1.98 \times 4 \times 3600 = 2.85 \times 10^4 \text{ J} \]

During the photocatalytic reaction under full-spectrum-light illumination, 370.05 μmol H₂ was
detected by gas chromatography (GC), which indicated that the energy generated by water splitting was:

\[E_{\text{Hydrogen}} = 370.05 \times 10^{-6} \times 6.02 \times 10^{23} \times 2.46 \times 1.609 \times 10^{-19} = 88.2 \, \text{J}; \, 2.46 \, \text{eV} \text{ is the free energy of water splitting.} \]

The STH under visible light was determined to be:

\[\text{STH} = \frac{E_{\text{Hydrogen}}}{E_{\text{Solar}}} = \frac{88.2}{(2.85 \times 10^4)} = 0.31\% \]
<table>
<thead>
<tr>
<th>Samples</th>
<th>S_{BET} (m2·g$^{-1}$)</th>
<th>Pore size (nm)</th>
<th>V_{pore} (cm3·g$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCN</td>
<td>6.2</td>
<td>3.94</td>
<td>0.12</td>
</tr>
<tr>
<td>CN</td>
<td>273.6</td>
<td>3.71</td>
<td>3.05</td>
</tr>
<tr>
<td>Cu$_2$MoS$_4$/CN-2</td>
<td>228.2</td>
<td>2.22</td>
<td>2.38</td>
</tr>
</tbody>
</table>
Table S2 Photocatalytic H\textsubscript{2} evolution rates over some noble-metal-free co-catalysts modified g-C\textsubscript{3}N\textsubscript{4} photocatalysts in reported work in contrast with this work.

<table>
<thead>
<tr>
<th>Photocatalysts</th>
<th>Reactant solution and catalysts</th>
<th>Light source</th>
<th>Photocatalytic H\textsubscript{2} evolution rates (μmol·h-1)</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>NiS/g-C\textsubscript{3}N\textsubscript{4}</td>
<td>100 mg of catalyst in 100 mL of aqueous solution (15 vol% TEOA)</td>
<td>300 W Xe lamp, $\lambda > 420$ nm</td>
<td>48.2</td>
<td>74</td>
</tr>
<tr>
<td>CoP/ g-C\textsubscript{3}N\textsubscript{4}</td>
<td>100 mL of aqueous solution (10 vol% TEOA)</td>
<td>300 W Xe lamp, $\lambda > 420$ nm</td>
<td>47.4</td>
<td>75</td>
</tr>
<tr>
<td>MoS\textsubscript{2}/g-C\textsubscript{3}N\textsubscript{4}</td>
<td>20 mg of catalyst in 100 mL of aqueous solution (10 vol% lactic acid)</td>
<td>300 W Xe lamp, $\lambda > 420$ nm</td>
<td>26.8</td>
<td>76</td>
</tr>
<tr>
<td>Cu\textsubscript{2}MoS\textsubscript{4}/g-C\textsubscript{3}N\textsubscript{4}</td>
<td>10 mg of catalyst in 20 mL of aqueous solution (10 vol% TEOA)</td>
<td>300 W Xe lamp, $\lambda > 420$ nm</td>
<td>21.7</td>
<td>This work</td>
</tr>
<tr>
<td>NiCoP/g-C\textsubscript{3}N\textsubscript{4}</td>
<td>10 mL of aqueous solution (10 vol% TEOA)</td>
<td>300 W Xe lamp</td>
<td>16.4</td>
<td>77</td>
</tr>
<tr>
<td>Ni\textsubscript{3}C/g-C\textsubscript{3}N\textsubscript{4}</td>
<td>50 mg of catalyst in 80 mL of aqueous solution (15 vol% TEOA)</td>
<td>350 W Xe lamp, $\lambda > 420$ nm</td>
<td>15.2</td>
<td>78</td>
</tr>
<tr>
<td>Ag\textsubscript{2}S/g-C\textsubscript{3}N\textsubscript{4}</td>
<td>50 mg of catalyst in 80 mL of aqueous solution (25 vol% methanol)</td>
<td>Four 3 W LEDs, $\lambda > 420$ nm</td>
<td>10.0</td>
<td>79</td>
</tr>
<tr>
<td>Ni(OH)\textsubscript{2}/g-C\textsubscript{3}N\textsubscript{4}</td>
<td>50 mg of catalyst in 80 mL of aqueous solution (10 vol% TEOA)</td>
<td>350 W Xe lamp, $\lambda > 400$ nm</td>
<td>7.6</td>
<td>80</td>
</tr>
<tr>
<td>WC/g-C\textsubscript{3}N\textsubscript{4}</td>
<td>50 mg of catalyst in 100 mL of aqueous solution (15 vol% TEOA)</td>
<td>300 W Xe lamp, $\lambda > 420$ nm</td>
<td>7.3</td>
<td>81</td>
</tr>
<tr>
<td>WS\textsubscript{2}/g-C\textsubscript{3}N\textsubscript{4}</td>
<td>50 mg of catalyst in 80 mL of aqueous solution (25 vol% methanol)</td>
<td>300 W Xe lamp, $\lambda > 420$ nm</td>
<td>5.1</td>
<td>71</td>
</tr>
<tr>
<td>Ni\textsubscript{3}P\textsubscript{y}/g-C\textsubscript{3}N\textsubscript{4}</td>
<td>2 mg of catalyst in 5 mL of aqueous solution (20 vol% TEOA)</td>
<td>Xe lamp, $\lambda > 420$ nm</td>
<td>0.3</td>
<td>82</td>
</tr>
</tbody>
</table>
5. Scheme and Figures

Scheme S1. Schematic illustration of the formation of Cu$_2$MoS$_4$/CN composites
Fig. S1. SEM image of Cu$_2$MoS$_4$/BCN

Fig. S2. N$_2$ adsorption–desorption isotherms (A) and pore size distribution curves (B) of BCN, CN, and Cu$_2$MoS$_4$/CN-2 samples.
Fig. S3. Photocurrent response (A) and EIS (B) of Cu$_2$MoS$_4$/CN-2, CuS/CN and MoS$_2$/CN samples.

Fig. S4. XRD patterns of fresh and used Cu$_2$MoS$_4$/CN-2 samples.
Fig. S5. Mott-Schottky plots of (A) CN with E_{fb} of about -1.59 V and (B) Cu$_2$MoS$_4$ with E_{fb} of about -0.27 V vs Ag/AgCl. These values can be converted into -1.39 V for CN and -0.07 V for Cu$_2$MoS$_4$, respectively.

Fig. S6. Tauc plots of $(Ahv)^2$ versus hv of Cu$_2$MoS$_4$.