Isobutane aromatization over complete Lewis-acid Zn/HZSM-5 zeolite catalyst: performance and mechanism

a State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China

b State Key Laboratory for Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China

Content

Table S1 ...S2
Figure S1 ..S2
Figure S2 ..S3
Figure S3 ..S3
Figure S4 ..S4
Figure S5 ..S5
Figure S6 ..S6-7
Scheme S1 ..S8
Scheme S2 ..S9
Scheme S3 ..S10
Figure S7 ..S11-13
Table S1 DFT calculation of ZnO structure inside of zeolite channel

<table>
<thead>
<tr>
<th>n</th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔG (kcal/mol)</td>
<td>2.99</td>
<td>2.85</td>
<td>31.52</td>
<td>-303.28</td>
<td>-305.08</td>
</tr>
</tbody>
</table>

The thermodynamic stability of ZnO cluster inside of channel (873K)

Zeolite@\((\text{ZnO})_n\) → Zeolite + (ZnO)_n

Based on the calculation, it was found that if n is not bigger than 5, the Gibbs free energies were positive, while n is bigger than 5, the Gibbs free energies were negative. It dictates that in the intersection of ZSM5, (ZnO)₅ cluster is the biggest and stable cluster.

Figure S1 H₂-TPR profiles of ZnO reference and Zn₈.₄⁷/HZSM-5 catalyst pretreated by H₂ flow at the speed of 3ml/min for 6 hours at different temperatures.
Figure S2 Reaction stability of isobutane conversion over HZSM-5 and Zn/HZSM-5 catalysts. (a) 400°C, (b) 450°C, (c) 500°C, (d) 560°C. Reaction conditions: P=0.1 MPa, WHSV=0.75 h⁻¹.

Figure S3 Reaction stability of BTX selectivity over HZSM-5 and Zn/HZSM-5 catalysts. (a) 400°C (b) 450°C (c) 500°C (d) 560°C. Reaction conditions: P=0.1 MPa, WHSV=0.75 h⁻¹.
Figure S4 DB-FTIR profiles of isobutane aromatization on nano-sized HZSM-5, Zn$_{2.34}$/HZSM-5 and Zn$_{0.47}$/HZSM-5 catalysts at different temperatures 150-450°C and 101.33 kPa obtained using a DB-FTIR spectrometer in a flowing mixture of isobutane and nitrogen gas (2 % isobutane - 98 % nitrogen), GHSV=1080 h$^{-1}$.
Three-dimensional DB-FTIR profiles of propene aromatization on (a) nano-sized HZSM-5, (b) Zn_{2.34}HZSM-5 and (c) Zn_{6.47}HZSM-5 catalysts at 250°C and 101.33 kPa obtained using a DB-FTIR spectrometer in a flowing mixture of propene and nitrogen gas (6% propene - 94% nitrogen), GHSV=1080 h⁻¹.
Figure S6 Geometric structures of reaction intermediates and transition states in primary activation of isobutane
(the unit for bond length is Å)
Supplementary Information

Path 1 and 2: propylene oligomerization over \([\text{Zn(OH)}]^+\) according to carbanion mechanism; Path 3: propylene oligomerization over \([\text{Zn}(\text{C}_3\text{H}_3)]^+\) according to carbocation mechanism

Zinc-Oxide-Zinc

Path 1 and 2:
- \(\text{Zn}^{2+} - \text{C}_3\text{H}_2\)
- \(\text{H}_2\text{C} = \text{CH} - \text{CH}_2\rightarrow\text{O} \rightarrow \text{H}_2\text{C} = \text{CH} - \text{CH}_2\rightarrow\text{H} \rightarrow \text{H}_2\text{C} = \text{CH} - \text{CH}_2\rightarrow\text{OH} \rightarrow \text{Zn}^{2+} - \text{C}_3\text{H}_2\)
- \(\Delta E_{\text{AH}} = -14.27\text{ Kcal/mol}\)
- \(\Delta E_{\text{TS}} = -3.91\text{ Kcal/mol}\)
- \(\Delta E = -21.04\text{ Kcal/mol}\)

Path 2:
- \(\text{H}_2\text{C} = \text{CH} - \text{CH}_2\rightarrow\text{Zn}^{2+} \rightarrow \text{H}_2\text{C} = \text{CH} - \text{CH}_2\rightarrow\text{Zn}^{2+} \rightarrow \text{H}_2\text{C} = \text{CH} - \text{CH}_2\rightarrow\text{OH} \rightarrow \text{Zn}^{2+} - \text{C}_3\text{H}_2\)
- \(\Delta E = -31.08\text{ Kcal/mol}\)
- \(\Delta E_{\text{TS}} = 35.66\text{ Kcal/mol}\)
- \(\Delta E_{\text{AH}} = -30.97\text{ Kcal/mol}\)

Path 3:
- \(\text{H}_2\text{C} = \text{CH} - \text{CH}_2\rightarrow\text{Zn}^{2+} \rightarrow \text{H}_2\text{C} = \text{CH} - \text{CH}_2\rightarrow\text{Zn}^{2+} \rightarrow \text{H}_2\text{C} = \text{CH} - \text{CH}_2\rightarrow\text{OH} \rightarrow \text{Zn}^{2+} - \text{C}_3\text{H}_2\)
- \(\Delta E = -34.22\text{ Kcal/mol}\)
- \(\Delta E_{\text{TS}} = 29.88\text{ Kcal/mol}\)

Path 4:
- \(\text{H}_2\text{C} = \text{CH}_2\rightarrow\text{Zn}^{2+} \rightarrow \text{H}_2\text{C} = \text{CH}_2\rightarrow\text{Zn}^{2+} \rightarrow \text{H}_2\text{C} = \text{CH}_2\rightarrow\text{OH} \rightarrow \text{Zn}^{2+} - \text{C}_3\text{H}_2\)
- \(\Delta E = -34.27\text{ Kcal/mol}\)
- \(\Delta E_{\text{TS}} = 20.12\text{ Kcal/mol}\)
Scheme S2 The cyclization of propylene dimmer (formed by Path1) over (Zn-O-Zn)²⁺ active center with the participation of adjacent [ZnOH]⁺
Scheme S3 The cyclization of propylene dimer (formed by Path 3) over (Zn-O-Zn)$^{2+}$ active center with the participation of adjacent [ZnOH]$^+$
Figure S7 Geometric structures of reaction intermediates and transition states of propylene oligomerization and cyclization (the unit for bond length is Å)