Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2018

Supplementary Material (ESI) for xxxx This journal is (c) The Royal Society of Chemistry 2018

Electronic Supplementary Information

Enhanced Visible light photocatalytic nonoxygen coupling of amines to imines

integrated with hydrogen production over Ni/CdS Nanoparticles†

Weiwei Yu,^a Di Zhang,^a Xinwen Guo,^a Chunshan Song,^{a,b} Zhongkui Zhao,^{a,*}

^a State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China. * Corresponding author: zkzhao@dlut.edu.cn
^b EMS Energy Institute, PSU-DUT Joint Center for Energy Research and Department of Energy & Mineral Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States

Entry	Catalyst	T [°C]	Atm.	Amines oxidation rate [µmol g ⁻¹ h ⁻¹]	Ref. No.
1 <i>a</i>	Ni/CdS	20	N_2	45410	this work
2 <i>a</i>	Pt/MOF	RT	N_2	486	[1]
2	Au/TiO ₂	RT	air	883	[2]
3	[Au ₂₅]/TiO ₂	30	O_2	39600	[3]
			Ar	1485	
4	Au-Pd/ZrO ₂	45	O_2	198	[4]
5	$g-C_3N_4$	20	O_2	24503	[5]
6	mpg-C ₃ N ₄	80	O_2	6000	[6]
			Ar	1600	
7 ^b	Fe(bpy) ₃ /npg-C ₃ N ₄	RT	O_2	94 [%]	[7]
8	BiVO ₄ /g-C ₃ N ₄	RT	O_2	1089	[8]
9	Nb_2O_5	RT	O_2	691	[9]
10 ^b	WS_2	50	O_2	94 [%]	[10]
			Ar	10 [%]	
11	WO ₃ .H ₂ O	80	O_2	1163	[11]
12	WO_3	RT	O_2	950	[12]
13	TiO ₂	RT	air	1100	[13]
14	BiOBr	25	air	71	[14]

Table S1. Summary of the catalytic activity of literature reported photocatalysts for coupling of benzylamine to imine.

^a To introduce water into the reaction systems. ^b x [%] express the imine yield

Supplementary Material (ESI) for xxxx This journal is (c) The Royal Society of Chemistry 2018

Figure S1. SEM images of (a) CdS NPs and (b) Ni/CdS. Insets are the photographs of the photocatalyt systems before and after in situ photodeposition of metallic Ni.

Figure S2. XPS spectra of Ni/CdS photocatalyst: (a) full spectrum, (b) Cd 3d, (c) S 2p.

Supplementary Material (ESI) for xxxx This journal is (c) The Royal Society of Chemistry 2018

Figure S3. Nitrogen adsorption-desorption isotherms (a) and BJH pore size distribution from adsorption branch (b) of the as-prepared CdS NPs.

Figure S4. The amount of H_2 production and the imine base on the proposed mechanism of reaction, the ratio of H_2 and benzylamine oxidative product should be 1: 2. The amount of H_2 production and the imine basically follow the ratio (1:2) in the Fig. S4.

Figure S5. ¹H NMR spectrum of the as-synthesized benzenemethanamine ($C_{14}H_{13}N$). **1H NMR** (500 MHz, CD₃CN): δ 8.45 (s, 1H), 7.82 – 7.72 (m, 2H), 7.47 – 7.41 (m, 3H), 7.34 (d, J = 4.4 Hz, 4H), 7.28 – 7.22 (m, 1H), 4.76 (d, J = 1.0 Hz, 2H) ppm.

Figure S6. GC-MS spectrum of benzenemethanamine $(C_{14}H_{13}N)$

Figure S7. GC-MS spectrum of dibenzylamine (C₁₄H₁₆N).

Supplementary Material (ESI) for xxxx This journal is (c) The Royal Society of Chemistry 2018

Figure S8. GC-MS spectrum of benzaldehyde (C₆H₅CHO).

Figure S9. GC-MS spectrum of 2-Amino-2-phenylacetamide (C₈H₁₀N₂O).

4. Reference

(2) H. Liu, C. Y. Xu, D. D. Li, H. L. Jiang, Angew. Chem. Int. Ed., 2018, 57, 1.

(3) Naya, S.; Kimura, K.; Tada, H. ACS Catal. 2012, 3, 10.

(4) Chen, H. J.; Liu, C.; Wang, M.; Zhang, C. F.; Luo, N. C.; Wang, Y. H.; Abroshan, H.; Li, G.; Wang, F. ACS Catal. **2017**, *7*, 3632.

(5) Sarina, S.; Zhu, H. Y.; Jaatinen, E.; Xiao, Q.; Liu, H. W.; Jia, J. F.; Chen, C.; Zhao, J. J. Am. Chem. Soc. 2013,

135, 5793.

- (6) Wang, H.; Sun, X. S.; Li, D. D.; Zhang, X. D.; Chen, S. C.; Shao, W.; Tian, Y. P.; Xie, Y. J. Am. Chem. Soc. 2017, 139, 2468.
- (7) Su, F. Z.; Mathew, S. C.; MÖhlmann, L.; Antonietti, M.; Wang, X. C.; Blechert, S. Angew. Chem. Int. Ed. 2011, 50, 657.
- (8) Kumar, A.; Kumar, P.; Joshi, C.; Ponnada, S.; Pathak, A. K.; Ali, A.; Sreedhar, B.; Jain, S. L. *Green Chem.* **2016**, *18*, 2514.
- (9) Samanta, S.; Khilari, S.; Pradhan, D.; Srivastava, R. ACS Sustainable Chem. Eng. 2017, 5, 2562.
- (10) Furukawa, S.; Ohno, Y.; Shishido, T.; Teramura, K.; Tanaka, T. ACS Catal. 2011, 1, 1150.
- (11) Raza, F.; Park, J. H.; Lee, H. R.; Kim, H. I.; Jeon, S. J.; Kim, J. H. ACS Catal. 2016, 6, 2754.
- (12) Zhang, N.; Li, X. Y.; Liu, Y. F.; Long, R.; Li, M. Q.; Chen, S. M.; Qi, Z, M.; Wang, C. G.; Song, L.; Jiang, J.; Xiong, Y. J. *Small* **2017**, *13*, 17354.
- (13) Zhang, N.; Li, X. Y.; Ye, H. C.; Chen, S. G.; Ju, H. X.; Liu, D. B.; Yue, L.; Ye, W.; Wang, C. M.; Xu, Q.; Zhu, J.
- F.; Song, L.; Jiang, J.; Xiong, Y. J. J. Am. Chem. Soc. 2016, 138, 8928.
- (14) Lang, X. J.; Ji, H. W.; Chen, C. C.; Ma, W. H.; Zhao, J. C. Angew. Chem. Int. Ed. 2011, 50, 3934.
- (15) Han, A. J.; Zhang, H. W.; Chuah, G. K.; Jaenicke, S. Appl. Catal., B 2017, 219, 269.