Supporting Information

Factors affecting photocatalytic activity of visible light responsive titanium dioxide doped with chromium ions

Naoto Nishiyama†, Keisuke Kozasa‡, Toshihiro Okajima§, Mamoru Fujitsuka†, Tetsuro Majima‡

and Suzuko Yamazaki*‡

† Division of Environmental Science and Engineering, Graduate School of Science and Engineering, Yamaguchi University, Yamaguchi 753-8512, Japan

‡ Division of Earth Science, Biology, and Chemistry, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8512, Japan

§ Kyushu Synchrotron Light Research Center (SAGA-LS), Saga 841-0005, Japan

† The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Osaka 567-0047, Japan
Fig. S1 UV-vis diffuse reflectance spectra of TiO₂ and 0.8 – 6.6 atom% Cr-TiO₂ sintered at 200°C.
Fig. S2 N$_2$ adsorption-desorption isotherms of 0.8 – 6.6 atom% Cr-TiO$_2$ sintered at 200 - 500$^\circ$C.
0.8 atom%

1.7 atom%
Fig. S3 XRD patterns of 0.8 – 6.6 atom% Cr-TiO$_2$ sintered at 200 - 600°C.
Fig. S4 Plots of Cr(VI)/Cr(III) ratios or 4-CP degradation ratio against sintering temperature for 2.9 atom% (a), (c) and 6.6 atom% Cr-TiO₂ (b), (d), after visible light irradiation for 150 min.
Fig. S5 TDR spectra observed after 80 fs laser flash for 6.6 atom% Cr-TiO$_2$ sintered at 400°C.
Fig. S6 Local structure models of (i) anatase TiO$_2$ 3 × 3 × 1 supercell; (ii) model_a: two neighboring Ti(IV) were replaced with Cr(III) and oxygen between the atoms was withdrawn; and (iii) model_b: two neighboring Ti(IV) sites were replaced with Cr(III) and distant oxygen was withdrawn.