SUPPORTING INFORMATION

for

Surprisingly high sensitivity of copper nanoparticles toward coordinating ligands: consequences for the hydride reduction of benzaldehyde

Xavier Frogneux, a,b Ferenc Borondics, c Stéphane Lefrançois, c Florian D’Accriscio, a,b Clément Sanchez, a,b Sophie Carencoa,b,*

a Sorbonne Université, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris, 4 Place Jussieu, F-75005 Paris, France

b PSL University, Collège de France, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris, 11 Place Marcelin Berthelot, Paris, France.

c SMIS Beamline, Soleil synchrotron, 91190 Saint-Aubin

* Corresponding author e-mail: sophie.carenco@sorbonne-universite.fr

Outline
1. General details ..2
2. Nanoparticles synthesis and characterizations3
3. Reaction profiles using the ATR FTIR cell6
4. Catalytic tests ..11
5. Experiments with pure Copper foil17
6. TEM imaging with various hydride sources21
1. General details

All syntheses and procedures were carried under inert gas (N\textsubscript{2} or Ar) using an inert glovebox (H\textsubscript{2}O: ≤ 0.5 ppm, O\textsubscript{2}: ≤ 0.5 ppm) and Schlenk techniques.

Powder X-ray reflection measurements (XRD) were performed with a Bruker D8 X-ray diffractometer operating in reflection mode with Cu K\textalpha radiation (40 kV, 40 mA). The data were collected in the 15-80° range (2θ) with steps of 0.05° and a counting time of 2 s using Si-sample holders. The Scherrer equation was applied with a form factor K of 0.94, to a maximum number of reflections for each diffractogram.

For transmission electron microscopy (TEM) observations, the powders were dispersed in anhydrous THF. A few drops of the resulting dispersions were deposited on a carbon-coated copper grid. After solvent evaporation, TEM was performed with a FEI TECMAI G2 Spirit Twin electron microscope operating at 120 kV.

Nuclear Magnetic resonance (NMR) spectroscopy: 1H NMR, and 31P{}(1H) NMR spectra were recorded at room temperature on a Bruker Avance 300 spectrometer. Shifts (δ) are given in parts per million (ppm) using the resonance of the solvent peak as a secondary reference (δ(1H) = 7.26 ppm for the residual signal of CDCl\textsubscript{3}). Multiplicities are reported using the following abbreviations: s (singlet), bs (broad signal), d (doublet), t (triplet), q (quartet), quint. (quintet), m (multiplet).

GC/MS of the supernatant was acquired on a simple quadripole mass spectrometer DSQII.

THF (99.8+% , anhydrous, unstab.) was purchased from Alfa-Aesar, toluene (99.8%, anhydrous) and acetonitrile (99.93%, anhydrous) were purchased from Aldrich and used as received in a glovebox. Benzaldehyde, tri(n-butyl)phosphine (99%, Strem Chemicals), tri-tert-butylphosphine (99%, Strem Chemicals), triphenylphosphine (99%, Strem Chemicals), tricyclohexylphosphine (97%, Strem Chemicals), 1,2-bis(diphenylphosphino)benzene (97%, Aldrich), 1,1,1-tris(diphenylphosphinomethyl)ethane (97%, Strem Chemicals), oleylamine (>98%, Aldrich), [Cu(acac)]\textsubscript{2} (>99.9% Aldrich), copper foil (thickness 0.25 mm, 99.98%), phenylsilane (97+% , Acros), diphenylsilane (97%, Aldrich), triphenylsilane (97%, Aldrich), triethoxysilane (95%, Aldrich), triethylsilane (99%, Acros), TMDS (1,1,3,3-tetramethyldisiloxane) (97%, Acros), PMHS (polymethylhydrosiloxane) (Fluka), (9-BBN-H)\textsubscript{2} (Aldrich), sodium borohydride (NaBH\textsubscript{4}) (98%, Alfa-Aesar), sodium hydride (NaH) (95%, Aldrich).
2. Nanoparticles synthesis and characterizations

Preparation of copper nanoparticles with oleylamine.

In a round-bottom flask, 25 mL of oleylamine (73.8 mmol, 7.9 eq.) were added. The flask was put under vacuum and purged with N₂ three times. Under N₂, [Cu(acac)₂] (2.5 g, 9.55 mmol) was dissolved in oleylamine by heating the medium gently, under agitation. Once the solution was homogeneous, the temperature was increased to 250 °C for 2 h. The color changed from sky-blue to brown to black. After cooling at RT under N₂, n-hexane (5 mL), acetone (25 mL) and methanol (2 mL) were successively added to the crude solution. Then the nanoparticles were isolated by centrifugation (3,000 rpm, 20 min, 20 °C). The supernatant was removed and the particles were redispersed in n-hexane and washed with acetone/methanol (25 mL/2 mL) and centrifugated. This operation was repeated three times. The nanoparticles were then dried under a N₂ flow and stored in a glovebox (H₂O: ≤ 0.5 ppm, O₂: ≤ 0.5 ppm). 510 mg of powder were obtained (yield = 85%).

These nanoparticles will be referred as Cu NPs in the following.

The nanoparticles were confirmed to be Cu(0) nanoparticles by XRD. Scherrer equation indicated a size of crystallites of approx. 13 nm.

![XRD on the powder of the isolated Cu NPs.](image)
\(^1\text{H} \text{NMR Analysis of the supernatant of the Cu NPs synthesis:}\)

![H NMR Analysis of the supernatant of the Cu NPs synthesis](image)

Figure S2 - Comparison of pure OAm (top) and the synthesis crude (bottom) by \(^1\text{H} \text{NMR. Colored dots indicate the attribution of characteristic NMR peaks.}\)

Two side-products could be identified in the crude after elimination of the Cu NPs and concentration under vacuum, by \(^1\text{H} \text{NMR and GC/MS. Comparison with the spectrum of pure OAm shows the complete conversion of OAm into various products. Among them, N-oleylacetamide (mass 309 g.mol}^1) \text{and oleanitrile (mass 263 g.mol}^1) \text{can be identified with signature chemical shifts at 3.22 ppm (q, } J = 7 \text{ Hz, N-CH} \text{, red dot), 1.96 ppm (s, COCH} \text{, blue dot) and 2.60 ppm (bs, NH, green dot) for N-oleylacetamide}^2 \text{ and 2.32 ppm (t, } J = 7 \text{ Hz, NC-CH}_2, \text{ orange dot), 1.65 ppm (quint., } J = 7 \text{ Hz, NC-CH}_2-\text{CH}_2-\text{CH}_2, \text{ purple dot) for oleanitrile.}^3\)
ATR FT-IR cell at SMIS beamline (SOLEIL)

![Figure S3 - FTIR cell used for the IR study](image)

Figure S3 - FTIR cell used for the IR study (A) Simplified scheme of the ATR-FTIR cell; (B) view of the cell, 1 € coin for scale; (C) Cu NPs layered ATR crystal; (D) Top view of the experimental set-up.

The suspension of Cu NPs was drop-casted on an ATR Si-crystal (dimension: 1 cm x 2 cm) to get a thin layer of NPs, which was then analyzed by FT-IR. Frequencies below 1200 cm\(^{-1}\) could not be detected due to the absorption of the crystal.

![Figure S4 - FTIR spectra](image)

Figure S4 - FTIR spectra comparison between oleylamine and Cu NPs measured under inert atmosphere.
3. Reaction profiles using the ATR FTIR cell

In a glovebox, a layer of Cu NPs was prepared by dropcasting a suspension of Cu NPs in THF on the ATR crystal. The crystal was then placed in the IR-cell and sealed. The FTIR analysis takes place under a nitrogen flushed box. In the FTIR cell, a THF solution (5 mL) containing PhCHO (0.5 mL), PhSiH₃ (0.24 mL) and P(n-Bu)₃ (0.02 mL) is added with a syringe on the layer of Cu NPs and the spectra are recorded every 80 s.

In a glovebox, a layer of Cu NPs was prepared by dropcasting a suspension of Cu NPs in THF on the ATR crystal. The crystal was then placed in the IR-cell and sealed. The FTIR analysis takes place under a nitrogen flushed box. In the FTIR cell, a THF solution (5 mL) containing PhCHO (0.5 mL) and PhSiH₃ (0.24 mL) is added with a syringe on the layer of Cu NPs and the spectra are recorded every 80 s.

without P(n-Bu)₃: Overlay of spectra (over 30 min) from light grey to dark:⁴

![Figure S5 - Overlay of FTIR evolution of the reaction medium in the absence of P(n-Bu)₃. Light-gray spectra as the first ones in the series. The last spectrum is the black one.](image)

Observations: no change of the signal of benzaldehyde (green dots), the ν(Si-H) signal slightly shifts to the left (2 cm⁻¹) and broadens over time. No detection of new signals.
Without benzaldehyde:

In a glovebox, a solution of PhSiH₃ (0.240 mL) in THF (5 mL) is prepared. Under a flow of N₂, 0.1 mL of this solution is added to the FI-IR cell. Then, 0.1 mL of a well-dispersed THF solution (5 mL) containing 2 mg of Cu NPs and 0.02 mL of P(n-Bu)₃, is added to the cell through the inlet. The spectra are recorded every 80 s.

Figure S6 - Overlay of FTIR evolution of the reaction medium in the absence of benzaldehyde. Light-gray spectra as the first ones in the series. The last spectrum is the black one.

Figure S7 - Integration of the ν(Si-H) band over time
Without phenylsilane:

In a glovebox, a solution of PhCHO (0.5 mL) in THF (5 mL) is prepared. Under a flow of N₂, 0.1 mL of this solution is added to the FIIR cell. Then, 0.1 mL of a well-dispersed THF solution (5 mL) containing 2 mg of Cu NPs and 0.02 mL of P(n-Bu)_3, is added to the cell through the inlet. The spectra are recorded every 80 s.

![Reaction scheme](image)

Figure S8 - Overlay of FTIR evolution of the reaction medium in the absence of phenylsilane. Light-gray spectra as the first ones in the series. The last spectrum is the black one.

![Integration plot](image)

Figure S9 - Integration of the υ(C=O) band over time
Reaction profile with a layer of Cu NPs dispersed in an excess of DBU (instead of P(n-Bu)_3):

In a glovebox, a layer of Cu NPs + xsDBU was prepared by dropcasting a suspension of Cu NPs (1mg) + DBU (1mL) in THF (5mL) on the ATR crystal. The crystal was then placed in the IR-cell and sealed. The FT-IR analysis takes place under a nitrogen flushed box. In the FT-IR cell, a THF solution (5 mL) containing PhCHO (0.5 mL), PhSiH₃ (0.24 mL) is added with a syringe on the layer of Cu NPs and the spectra are recorded every 80 s.

![Diagram showing reaction profile](image)

Figure S10 - Overlay of FTIR evolution of the reaction medium in the presence of DBU instead of P(n-Bu)_3. Light-gray spectra as the first ones in the series. The last spectrum is the black one.
Reaction profile with PhMe₂SiH instead of PhSiH₃:

In a glovebox, a layer of Cu NPs was prepared by dropcasting a suspension of Cu NPs (1 mg) + P(n-Bu)₃ (0.02 mL) in THF (5 mL) on the ATR crystal. The crystal was then placed in the IR-cell and sealed. The FT-IR analysis takes place under a nitrogen flushed box. In the FT-IR cell, 0.1 mL of a THF solution (0.5 mL) containing PhCHO (0.05 mL), PhMe₂SiH (0.08 mL) and is added with a syringe on the layer of Cu NPs and the spectra are recorded every 80 s.

![Reaction profile diagram]

Figure S11 - Overlay of FTIR evolution of the reaction medium in the presence of dimethylphenylsilane instead of phenylsilane. Light-gray spectra as the first ones in the series. The last spectrum is the black one.
4. Catalytic tests

In a 10 mL vial, Cu NPs (2 mg, 0.03 mmol) were suspended in THF (5 mL). After the addition of 300 μL of a 0.1 M solution of P(n-Bu)_3 in THF, the mixture was put in a sonication bath for 1 min. To this dark red suspension, PhSiH_3 (250 μL, 2.03 mmol) and PhCHO (500 μL, 4.92 mmol) are added. Self-heating of the medium and formation of bubbles is observed at this point. After 2 h of agitation at room temperature, an aliquot of the crude is analyzed by ¹H NMR in CDCl₃ to determine the conversion of benzaldehyde.

Figure S12 - ¹H NMR in CDCl₃ of aliquots of the reaction mixture: A = Benzaldehyde with (Cu NPs + P(n-Bu)_3 (0.6 mol%)) in THF; B = after addition of PhSiH₃, room temperature, 2 h.
Observations using [Cu(acac)$_2$] + P(n-Bu)$_3$ as catalyst:

To the blue solution of [Cu(acac)$_2$] in THF, addition of P(n-Bu)$_3$ did not give any visible change. At the addition of PhSiH$_3$, the solution quickly changed from blue to yellow then dark brown. A TEM grid was prepared with an aliquot, showing the formation of NPs (Figure S13).

Figure S13 - TEM image of the nanoparticles formed during after the addition of PhSiH$_3$ to the solution of Cu(acac)$_2$ + P(n-Bu)$_3$ in THF
Comparison of benzaldehyde conversion in the presence of various phosphines:

In a 10 mL vial, Cu NPs (1 mg, 0.016 mmol) were suspended in THF (2.5 mL). After the addition of 0.015 mmol of the corresponding phosphine, the mixture was put in a sonication bath for 1 min. To this dark red suspension, PhSiH\(_3\) (125 μL, 1.01 mmol) and PhCHO (250 μL, 2.46 mmol) are added. After 15 min of agitation at room temperature, an aliquot of the crude is analyzed by \(^1\)H NMR in CDCl\(_3\) to determine the conversion of benzaldehyde. The results are detailed in Table S1.

![Chemical reaction diagram]

<table>
<thead>
<tr>
<th>Entry</th>
<th>Phosphine</th>
<th>NMR yield(^{(a)}) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>P((n)-Bu)(_3))</td>
<td>93%</td>
</tr>
<tr>
<td>2</td>
<td>PhBu(_3))</td>
<td>2%</td>
</tr>
<tr>
<td>3</td>
<td>PCy(_3))</td>
<td>59%</td>
</tr>
<tr>
<td>4</td>
<td>PPh(_3))</td>
<td>85%</td>
</tr>
<tr>
<td>5</td>
<td>dppBz(^{(b)}))</td>
<td>76%</td>
</tr>
<tr>
<td>6</td>
<td>Triphos(^{(c)}))</td>
<td><1%</td>
</tr>
</tbody>
</table>

\(^{(a)}\) based on benzaldehyde conversion into silylated benzylic alcohol species. \(^{(b)}\) 0.5 equiv. vs Cu \(^{(c)}\) 0.33 equiv. vs Cu

Table S1 - Influence of the phosphine.
ESI-MS analysis

ESI/MS was acquired using a mass spectrometer LC ESI/LTQ Orbitrap.

Sample preparation:

Under inert atmosphere, 2 mg of Cu NPs were suspended in 2 mL of pure P(n-Bu)_3 and agitated at RT for 1 week. The suspension was then diluted with THF (5 mL) and centrifuged at 30,000 g for 25 min. The supernatant was eliminated and the resulting solid redispersed in 5 mL of THF and centrifuged again (operation repeated twice). The resulting powder was redispersed in THF (1 mL). For the ESI-MS analysis, 15 μL of this suspension was diluted in 1 mL of acetonitrile.

ESI Positive mode ESI in CH₃CN (low energy)

Figure S14 - ESI positive mode in CH₃CN (low energy).
Figure S15 - ESI positive mode in CH$_3$CN (high energy).
ICP-MS analysis

The analysis was conducted on a iCAP 6000 ICP-AES Thermo Fisher. The calibration has been realized with ICP standard copper solutions (1000 ± 3 g.mL⁻¹) in HNO₃ (4 w%), PlasmaCAL from SCP science.

Sample preparation:

Under inert atmosphere, 2 mg of Cu NPs (0.032 mmol of Cu atoms) were suspended in 5 mL of THF in the presence of a phosphine (1 equiv. vs. Cu atom), TMDS (0.500 mL, 2.82 mmol) and benzaldehyde (0.500 mL, 5 mmol) and agitated at RT for 15 min. The reaction medium was then centrifuged at 10,000 g for 30 min. The colorless supernatant was carefully separated and the volatiles were removed under vacuum. The resulting oil was dissolved in HNO₃ 5 w% (10 mL) and the aqueous phase was analyzed by ICP, using the 324.7 and 327.3 nm wavelength of copper for the dosage.

The analysis was recorded on two samples prepared independently: the concentration of Cu leached species in solution after workup steps were 0.15 and 0.12 mM, corresponding to respectively a leaching of 5.1% and 4.3% of the quantity of copper initially introduced.
5. Experiments with pure Copper foil

In a 10 mL vial, a Cu foil (approx. 45 mg, 0.5 cm x 0.5 cm) put in THF (2.5 mL). After the addition of 150 μL of a 0.1 M solution of P(n-Bu)₃ in THF, PhSiH₃ (120 μL, 0.97 mmol) and PhCHO (250 μL, 2.46 mmol) are added. After 18 h of agitation at room temperature, an aliquot of the crude is analyzed by ¹H NMR in CDCl₃ to determine the conversion of benzaldehyde and phenylsilane.

Figure S16 - Photographs of the reactions: left: with Cu foil without P(n-Bu)₃; right: with Cu foil with P(n-Bu)₃.
Without $P(n$-$Bu)_3$

![Reaction Scheme](image)

Figure S17 - 1H NMR spectrum of the reaction crude (without $P(n$-$Bu)_3$).
Without Cu foil

Figure S18 - 1H NMR and 31P[1H] NMR spectra of the reaction crude (without Cu foil).
with Cu foil and P(n-Bu)_3

![Chemical structure and NMR spectra](image)

Figure S19 - 1H NMR and 31P(1H) NMR spectra of the reaction crude (with Cu foil and P(n-Bu)_3).
6. TEM imaging with various hydride sources

![Diagram]

\[
\text{[Diagram showing TEM imaging process with various hydride sources]}
\]

<table>
<thead>
<tr>
<th>Entry</th>
<th>Hydride source</th>
<th>Conversion(^{(a)})</th>
<th>TEM observation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PhSiH(_3)</td>
<td>>99(^{(b)})</td>
<td>![TEM image]</td>
</tr>
<tr>
<td>2</td>
<td>Ph(_2)SiH(_2)</td>
<td>>99%</td>
<td>![TEM image]</td>
</tr>
<tr>
<td>3</td>
<td>(EtO)(_3)SiH</td>
<td>>99%</td>
<td>![TEM image]</td>
</tr>
<tr>
<td>4</td>
<td>TMDS</td>
<td>31%</td>
<td>![TEM image]</td>
</tr>
<tr>
<td>5</td>
<td>PhMe(_2)SiH</td>
<td>n.d.</td>
<td>![TEM image]</td>
</tr>
<tr>
<td></td>
<td>Compound</td>
<td>Purity</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--------------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Et<sub>3</sub>SiH</td>
<td>n.d.</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Ph<sub>3</sub>SiH</td>
<td>n.d.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>PMHS</td>
<td>n.d.</td>
<td></td>
</tr>
<tr>
<td>9<sup>(c)</sup></td>
<td>NaH</td>
<td>>99%</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>NaBH<sub>4</sub></td>
<td>>99%</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>(9-BBN-H)<sub>2</sub></td>
<td>>99%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>HCO₂NH₄</td>
<td>n.d.</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>H₂</td>
<td>n.d.</td>
<td></td>
</tr>
</tbody>
</table>

(a) ¹H NMR yield given for the conversion of benzaldehyde to the corresponding alcohol; n.d. = not detected (b) Complete after 20 min. (c) benzaldehyde is fully converted into benzyl benzoate.

Table S2 - TEM observations of table 2 of the main text.

References

