C₃N₄-Mn/CNT composite as a heterogeneous catalyst in electro-peroxone process for promoting the reaction between O₃ and H₂O₂ in acid solution

Zhuang Guo, ab Linbi Zhou, a Hongbin Cao, a Yongbing Xie, *a Jiadong Xiao, ab Jin Yang a and Yi Zhang a

a National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Beijing Engineering Research Center of Process Pollution Control, Institute of Process Engineering, Chinese Academy of Science, Beijing 100190, China

b University of Chinese Academy of Sciences, Beijing 100049, China

*Corresponding author.

E-mail address: ybxie@ipe.ac.cn
List of Figures

Fig. S1 XRD patterns of Mn/CNT.

Fig. S2 Nitrogen adsorption-desorption isotherms and pore size distribution of g-C$_3$N$_4$, CNT and C$_3$N$_4$-Mn/CNT.

Fig. S3 H$_2$O$_2$ concentration at pH 3 in pure O$_2$ atmosphere and E-P process.

Fig. S4 Cyclic voltammetric curves of g-C$_3$N$_4$ and C$_3$N$_4$-Mn/CNT in 50 mM Na$_2$SO$_4$ solution at pH 3.

Fig. S5 H$_2$O$_2$ concentration with graphite cathode and Pt cathode under O$_2$ atmosphere at pH 3.

Fig. S6 tBA inhibition experiment of OA with C$_3$N$_4$-Mn/CNT in E-P process.

Fig. S7 SEM images of C$_3$N$_4$-Mn/CNT applied in E-P process after 60 min.
Fig. S1 XRD patterns of Mn/CNT.
Fig. S2 Nitrogen adsorption-desorption isotherms and pore size distribution of g-C$_3$N$_4$, CNT and C$_3$N$_4$-Mn/CNT.
Fig. S3 H_2O_2 concentration at pH 3 under pure O_2 atmosphere and in E-P process.
Fig. S4 Cyclic voltammetric curves of g-C$_3$N$_4$ and C$_3$N$_4$-Mn/CNT in 50 mM Na$_2$SO$_4$ solution at pH 3.
Fig. S5 H_2O_2 concentration with graphite cathode and Pt cathode under O_2 atmosphere at pH 3.
Fig. S6 tBA inhibition experiment of OA with C$_3$N$_4$-Mn/CNT in E-P process.
Fig. S7 SEM images of C$_3$N$_4$-Mn/CNT applied in E-P process after 60 min.