Electronic Supplementary Information
for
Kinetic and mechanistic aspects of solid state, nanostructured porphyrin diacid
photosensitizers in photooxidation of sulfides

Rahele Nasrollahi, Akram Heydari-turkmani, Saeed Zakavi*

Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran.

*Email: zakavi@iasbs.ac.ir

S1. 1H NMR, 13C NMR and UV-Vis spectral data of the used porphyrins
S2. Experimental setup for the photooxidation reactions
S3. Procedures for the oxidation of different sulfides and characterization of the oxidation products
S4. The results of EDX elemental analysis of H$_2$T(2-Cl)PP@nanoAmb
S5. The change in the UV–vis spectrum of DPBF upon irradiation with a 10W red LED lamp in the presence of the immobilized porphyrins.
S6. Photooxidation of different para-substituted phenyl methyl sulfides by H$_2$TPP@nanoAmb.
S1: \(^1\)H NMR, \(^{13}\)C NMR and UV-Vis spectral data of the used porphyrins

H\(_2\)TTPP. \(^1\)H NMR (400 MHz, CDCl\(_3\), TMS), δ/ppm: -2.77 (2H, br, s, NH), 7.77-7.84 (8H\(_m\) and 4H\(_p,m\)), 8.26-8.27 (8H\(_o\), d), 8.90 (8H\(_p\), s); \(^{13}\)C NMR (~100 MHz, CDCl\(_3\), TMS), δ/ppm: 120.18 (C\(_{meso}\)), 142.20 (C\(_1\)), 134.60 (C\(_2\), C\(_6\)), 126.73 (C\(_3\), C\(_5\)), 127.75 (C\(_4\)), 131.5 (C\(_β\)); UV-vis in CH\(_2\)Cl\(_2\), \(λ_{max}/\text{nm (log}ε)\): 417 (5.79), 513 (4.58), 548 (4.38), 590 (4.30), 647 (4.29).

H\(_2\)T(2-Me)PP. \(^1\)H NMR (400 MHz, CDCl\(_3\), TMS), δ/ppm: -2.59 (2H, br, s, NH), 7.54-7.74 (8H\(_m\) and 4H\(_p,m\), meta and para position relative to C atom attached to meso position), 7.99-8.11 (4H\(_o\), m, ortho-position relative to C atom attached to meso position), 8.70 (8H\(_β\), s), 2.01-2.11 (12H Me, m); \(^{13}\)C NMR (~100 MHz, CDCl\(_3\), TMS), δ/ppm: 118.82 (C\(_{meso}\)), 139.54 (C\(_1\)), 139.63 (C\(_2\)), 128.38 (C\(_3\)), 129.22 (C\(_4\)), 124.21 (C\(_5\)), 133.90 (C\(_6\)), 141.48 (C\(_α\)), 129.22 (C\(_β\)), 21.37 (C Me); UV-vis in CH\(_2\)Cl\(_2\), \(λ_{max}/\text{nm (log}ε)\): 416 (6.04), 512 (4.74), 545 (4.34), 589 (4.34), 645 (4.25).

H\(_2\)T(2-Cl)PP. \(^1\)H NMR (400 MHz, CDCl\(_3\), TMS), δ/ppm: -2.62 (2H, br, s, NH), 7.66-7.87 (8H\(_m\) and 4H\(_p,m\), meta and para position relative to C atom attached to meso position), 8.10-8.26 (4H\(_o\), m, ortho-position relative to C atom attached to meso position), 8.72 (8H\(_β\), s); \(^{13}\)C NMR (~100 MHz, CDCl\(_3\), TMS), δ/ppm: 116.76 (C\(_{meso}\)), 137.10 (C\(_1\)), 136.94 (C\(_2\)), 129.01 (C\(_3\)), 129.93 (C\(_4\)), 125.32 (C\(_5\)), 135.52 (C\(_6\)), 140.50 (C\(_α\)), 135.39 (C\(_β\)); UV-vis in CH\(_2\)Cl\(_2\), \(λ_{max}/\text{nm (log}ε)\): 416 (5.64), 512 (4.47), 543 (4.07), 587 (4.15), 643 (3.96).

H\(_2\)T(4-Cl)PP. \(^1\)H NMR (400 MHz, CDCl\(_3\), TMS), δ/ppm: -2.83 (2H, br, s, NH), 7.77-7.79 (8H\(_m\), d), 8.15-8.17 (8H\(_o\), d), 8.87(8H\(_β\), s); \(^{13}\)C NMR (~100 MHz, CDCl\(_3\), TMS), δ/ppm: 119.01 (C\(_{meso}\)), 140.37 (C\(_1\)), 135.52 (C\(_2\), C\(_6\)), 127.07 (C\(_3\), C\(_5\)), 134.41(C\(_4\)), 131.64 (C\(_β\)); UV-vis in CH\(_2\)Cl\(_2\), \(λ_{max}/\text{nm (log}ε)\): 418 (5.79), 513 (4.52), 547 (4.25), 590 (4.16), 647 (4.10).

H\(_2\)T(4-OMe)PP. \(^1\)H NMR (400 Hz, CDCl\(_3\), TMS), δ/ppm: -2.72 (2H, br, s, NH), 7.29-7.32 (8H\(_m\), d), 8.15-8.17 (8H\(_o\), d), 8.89(8H\(_β\), s), 4.13 (12H Me, s); \(^{13}\)C NMR (~100MHz, CDCl\(_3\), TMS), δ/ppm: 119.75 (C\(_{meso}\)), 134.67 (C\(_1\)), 135.62 (C\(_2\), C\(_6\)), 112.20 (C\(_3\),C\(_5\)), 159.39 (C\(_4\)), 131.34 (C\(_β\)), 55.61 (C\(_Me\)); UV-vis in CH\(_2\)Cl\(_2\), \(λ_{max}/\text{nm (log}ε)\): 421 (5.61), 517 (4.32), 555 (4.22), 593 (4.06), 651 (4.11).
H\textsubscript{2}T(4-Me)PP. \(^{1}\)H NMR (400 MHz, CDCl\(_3\), TMS), \(\delta/ppm:\) -2.76 (2H, br, s, NH), 7.55-7.58 (8H_m, d), 8.09-8.12 (8H_o, d), 8.86(8H_β, s), 2.65 (12H_Me, s); \(^{13}\)C NMR (~100 MHz, CDCl\(_3\), TMS), \(\delta/ppm:\) 120.47 (C\textsubscript{meso}), 139.73 (C_1), 134.92 (C_2, C_6), 127.81 (C_3, C_5), 137.71 (C_4), 131.37 (C_β), 21.57 (C_Me); UV-vis in CH\(_2\)Cl\(_2\), \(\lambda_{max}/nm\) (log\(\varepsilon\)): 418 (5.89), 516 (4.54), 551 (4.34), 590(4.18), 647 (4.20).

H\textsubscript{4}TPP(HSO\textsubscript{4})\textsubscript{2}. \(^{1}\)H NMR (400 MHz, CDCl\(_3\), TMS), \(\delta/ppm:\) 7.984-8.074 (8H_m and 4H_p, m), 8.626-8.663 (8H_o, m), 8.626-8.663 (8H_β, m), no signal was observed for the NH protons at 20 \(^\circ\)C.; \(^{13}\)C NMR (400MHz, CDCl\(_3\), TMS), \(\delta/ppm:\) 122.63 (C\textsubscript{meso}), 139.93 (C_1), 139.05 (C_2, C_6), 128.12 (C_3, C_5), 130.01 (C_4), 146.05 (C_α), 128.40(C_β); UV-vis in CH\(_2\)Cl\(_2\), \(\lambda_{max}/nm\) (log\(\varepsilon\)): 445 (5.70), 611 (3.43), 662 (3.77).

S2. Experimental setup for the photooxidation reactions

![Experimental setup](image)

S3: Procedures for the oxidation of different sulfides and characterization of the oxidation products

Methyl phenyl sulfoxide: Methyl phenyl sulfide (409.20 mg, 3.3 mmol) was performed according to the general procedure using H\textsubscript{2}TPP@nanoAmb (0.66 \(\times\) 10\(^{-3}\) mmol). Crude material
was separated by TLC on silica gel plates (ethyl acetate and n-hexane in a 1:4 volume ratio) to give Methyl phenyl sulfoxide; yield: 92%. 1H NMR (400 MHz, CDCl$_3$): $\delta=$ 7.56–7.38 (m, 5H), 2.61 (s, 3H).

Ethyl phenyl sulfoxide: Ethyl phenyl sulfide (465.18 mg, 3.3 mmol) was performed according to the general procedure using H$_2$TPP@nanoAmb (0.66 × 10$^{-3}$ mmol). Crude material was separated by TLC on silica gel plates (ethyl acetate and n-hexane in a 1:4 volume ratio) to give Ethyl phenyl sulfoxide; yield: 97%. 1H NMR (400 MHz, CDCl$_3$): $\delta=$ 7.60–7.45 (m, 4H), 2.91-2.82 (m, 1H), 2.77-2.68 (m, 1H), 1.15 (t, 3H).
4-Chlorophenyl methyl sulfoxide: 4-Chlorophenyl methyl sulfide (675.16 mg, 3.3 mmol) was performed according to the general procedure using H$_2$TPP@nanoAmb (0.66 × 10$^{-3}$ mmol). Crude material was separated by TLC on silica gel plates (ethyl acetate and n-hexane in a 1:4 volume ratio) to give 4-Chlorophenyl methyl sulfoxide; yield: 99%. 1H NMR (400 MHz, CDCl$_3$): δ = 7.57-7.55 (m, 2H), 7.47-7.45 (m, 2H), 2.69 (s, 3H).
4-Methoxyphenyl methyl sulfoxide: 4-Methoxyphenyl methyl sulfide (564.83 mg, 3.3mmol) was performed according to the general procedure using H$_2$TPP@nanoAmb (0.66 × 10$^{-3}$ mmol). Crude material was separated by TLC on silica gel plates (ethyl acetate and n-hexane in a 1:4 volume ratio) to give 4-Methoxy phenyl sulfoxide; yield: 95%. 1H NMR (400 MHz, CDCl$_3$): δ= 7.42 (d, 2H), 6.85 (d, 2H), 3.65 (s,3H), 2.51 (s,3H).
4-Cyanophenyl methyl sulfoxide: 4-Cyano phenyl methyl sulfide (492.36 mg, 3.3 mmol) was performed according to the general procedure using H$_2$TPP@nanoAmb (0.66 × 10$^{-3}$ mmol). Crude material was separated by TLC on silica gel plates (ethyl acetate and n-hexane in a 1:4 volume ratio) to give 4-Cyanophenyl methyl sulfoxide; yield: 93%. 1H NMR (400 MHz, CDCl$_3$): δ= 7.82-7.80 (m, 2H), 7.75-7.73 (m, 2H), 2.74 (s, 3H).
1-methyl 4- methyl phenyl sulfoxide: 1-methyl 4- methyl phenyl sulfide (468.47 mg, 3.3 mmol) was performed according to the general procedure using H₂TPP@nanoAmb (0.66 × 10⁻³ mmol). Crude material was separated by TLC on silica gel plates (ethyl acetate and n-hexane in a 1:4 volume ratio) to give 1-methyl 4- methyl phenyl sulfoxide; yield: 99%. ¹H NMR (400 MHz, CDCl₃): δ= 7.46-7.44 (d, 2H), 7.24-7.22 (d, 2H), 2.63 (s, 3H), 2.33 (s, 3H).
4-Flourophenyl methyl sulfoxide: 4-Flourophenyl methyl sulfide (797.74 mg, 3.3 mmol) was performed according to the general procedure using H₂TPP@nanoAmb (0.66 x 10⁻³ mmol). Crude material was separated by TLC on silica gel plates (ethyl acetate and n-hexane in a 1:4 volume ratio) to give 4-Flourophenyl methyl sulfoxide; yield: 99%. H NMR (400 MHz, CDCl₃): δ = 7.68-7.64 (m, 2H), 7.28-7.21 (m, 2H), 2.72 (s, 3H).
2-Chlorophenyl methyl sulfoxide: 2-Chlorophenyl methyl sulfide (675.16 mg, 3.3 mmol) was performed according to the general procedure using H$_2$TPP@nanoAmb (0.66 × 10$^{-3}$ mmol). Crude material was separated by TLC on silica gel plates (ethyl acetate and n-hexane in a 1:4 volume ratio) to give 2-Chlorophenyl methyl sulfoxide; yield: 99%. 1H NMR (400 MHz, CDCl$_3$): δ = 7.87-7.88 (d, 1H), 7.47-7.34 (m, 2H), 7.31-7.29 (m, 1H), 2.74 (s, 3H).
Diallyl sulfoxide: Dibutyl sulfide (335.40 mg, 3.3 mmol) was performed according to the general procedure using H$_2$TPP@nanoAmb (0.66 × 10$^{-3}$ mmol). Crude material was separated by TLC on silica gel plates (ethyl acetate and n-hexane in a 1:4 volume ratio) to give Diallyl sulfoxide; yield: 97%. 1H NMR (400 MHz, CDCl$_3$): δ= 5.94-5.83 (m, 2H), 5.46-5.35 (m, 4H), 3.55-3.37 (d, 4H).
Dibutyl sulfoxide: Dibutyl sulfide (405.54 mg, 3.3 mmol) was performed according to the general procedure using H$_2$TPP@nanoAmb (0.66 × 10$^{-3}$ mmol). Crude material was separated by TLC on silica gel plates (ethyl acetate and n-hexane in a 1:4 volume ratio) to give Dibutyl sulfoxide; yield: 70%. 1H NMR (400 MHz, CDCl$_3$): δ = 2.72-2.59 (m, 4H), 1.78-1.70 (m, 4H), 1.55-1.40 (m, 4H), 0.94 (t, 6H).
Benzyl phenyl sulfoxide: Benzyl phenyl sulfide (660.99 mg, 3.3 mmol) was performed according to the general procedure using H$_2$TPP@nanoAmb (0.66 × 10$^{-3}$ mmol). Crude material was separated by TLC on silica gel plates (ethyl acetate and n-hexane in a 1:4 volume ratio) to give Benzyl phenyl sulfoxide; yield: 75%. 1H NMR (400 MHz, CDCl$_3$): δ= 7.43-7.7.22 (m, 8H), 6.97 (d, 2H), 4.07-4.04 (d, 1H), 3.99-3.96 (d, 1H).
S5. The change in the UV–vis spectrum of DPBF upon irradiation with a 10W red LED lamp in the presence of the immobilized porphyrins.
S6. Photooxidation of different sulfides by H$_2$TPP@nanoAmb.a

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Product</th>
<th>Conversionb Selectivity</th>
<th>TON [TOF(h$^{-1}$)]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>99 [100]</td>
<td>4950 [1650]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>75 [100]</td>
<td>3750 [1250]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>70 [100]</td>
<td>3500 [1166]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>97 [100]</td>
<td>4850 [1616]</td>
</tr>
</tbody>
</table>

a The catalyst and substrate were used in 1:5000 molar ratio. A 20 W white LED lamp was used as the light source. b For a reaction time of 3 h in 1:1 acetonitrile (5 mL)/ water (5 mL) solvent mixture.