Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2019

Effect of Ce and La dopants in Co_3O_4 nanorods on catalytic activity of CO and C_3H_6 oxidation

Ping Li^{1,2,3}, Xiaoyin Chen¹, Lei Ma¹, Adarsh Bhat¹, Yongdan Li^{2,3,4}, Johannes W.

Schwank^{1,*}

¹Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA

²Tianjin Key Laboratory of Applied Catalysis Science and Technology and State Key

Laboratory for Chemical Engineering (Tianjin University), School of Chemical Engineering, Tianjin University, Tianjin 300072, China

³Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China

⁴Department of Chemical and Metallurgical Engineering, School of Chemical

Engineering, Aalto University, Kemistintie 1, FI-00076 Aalto, Finland

Fig. S1. HR-TEM images of (a) Co_3O_4 , (b) CeO_2 - Co_3O_4 and (c) La_2O_3 - Co_3O_4

Fig. S2. Light-off curves of CO (a) and C₃H₆ (b) oxidation over Co₃O₄ and physical mixed CeO₂+Co₃O₄ and La₂O₃+Co₃O₄. Reaction conditions: (a) 0.4% CO, 10% O₂ balanced with N₂; (b) 0.1% C₃H₆, 10% O₂ balanced with N₂

Fig. S3. Oxygen loss distribution of different catalysts versus temperature.

Fig. S4. *In situ* FTIR spectra of CO adsorbed at 100 °C followed by N₂ purging and O₂/N₂ reaction on (a) Co₃O₄, (b) CeO₂-Co₃O₄ and (c) La₂O₃-Co₃O₄

Fig. S5. In situ FTIR spectra of C_3H_6 initially adsorbed at 25 °C and then adsorbed at 200 °C followed by N₂ purging and O_2/N_2 reaction on (a) Co_3O_4 , (b) $CeO_2-Co_3O_4$ and (c) $La_2O_3-Co_3O_4$

Fig. S6. Long-term stability tests under the simulated diesel exhaust over (a) Co_3O_4 , (b) CeO_2 - Co_3O_4 and (c) La_2O_3 - Co_3O_4 . Reaction condition: 0.4% CO, 0.1% C_3H_6 , 0.05% NO, 10% O_2 , 5% H_2O balanced with N_2 at WHSV = 240, 000 mL g⁻¹ h⁻¹