Effect of Ce and La dopants in Co$_3$O$_4$ nanorods on catalytic activity of CO and C$_3$H$_6$ oxidation

Ping Li1,2,3, Xiaoyin Chen1, Lei Ma1, Adarsh Bhat1, Yongdan Li2,3,4, Johannes W. Schwank1,*

1Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
2Tianjin Key Laboratory of Applied Catalysis Science and Technology and State Key Laboratory for Chemical Engineering (Tianjin University), School of Chemical Engineering, Tianjin University, Tianjin 300072, China
3Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
4Department of Chemical and Metallurgical Engineering, School of Chemical Engineering, Aalto University, Kemistintie 1, FI-00076 Aalto, Finland
Fig. S1. HR-TEM images of (a) Co$_3$O$_4$, (b) CeO$_2$-Co$_3$O$_4$ and (c) La$_2$O$_3$-Co$_3$O$_4$
Fig. S2. Light-off curves of CO (a) and C$_3$H$_6$ (b) oxidation over Co$_3$O$_4$ and physical mixed CeO$_2$+Co$_3$O$_4$ and La$_2$O$_3$+Co$_3$O$_4$. Reaction conditions: (a) 0.4% CO, 10% O$_2$ balanced with N$_2$; (b) 0.1% C$_3$H$_6$, 10% O$_2$ balanced with N$_2$.
Fig. S3. Oxygen loss distribution of different catalysts versus temperature.
Fig. S4. *In situ* FTIR spectra of CO adsorbed at 100 °C followed by N₂ purging and O₂/N₂ reaction on (a) Co₃O₄, (b) CeO₂-Co₃O₄ and (c) La₂O₃-Co₃O₄
Fig. S5. In situ FTIR spectra of C$_3$H$_6$ initially adsorbed at 25 °C and then adsorbed at 200 °C followed by N$_2$ purging and O$_2$/N$_2$ reaction on (a) Co$_3$O$_4$, (b) CeO$_2$-Co$_3$O$_4$ and (c) La$_2$O$_3$-Co$_3$O$_4$
Fig. S6. Long-term stability tests under the simulated diesel exhaust over (a) Co$_3$O$_4$, (b) CeO$_2$-Co$_3$O$_4$ and (c) La$_2$O$_3$-Co$_3$O$_4$. Reaction condition: 0.4% CO, 0.1% C$_3$H$_6$, 0.05% NO, 10% O$_2$, 5% H$_2$O balanced with N$_2$ at WHSV = 240,000 mL g$^{-1}$ h$^{-1}$.