Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2018

Expanding the Allyl Analogy: Accessing η^3 -P,B,P Diphosphinoborane Complexes of Group 10

Marcus W. Drover and Jonas C. Peters*

Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States

1. Spectral data	S2
2. Electrochemistry	S17
3. Crystallography discussion and tables	S18
4. References	S23

Figure S1. 1, ¹H NMR, C₆D₆, 400 MHz, 298 K

Figure S2. 1, ¹³C{¹H} NMR, C₆D₆, 100 MHz, 298 K

Figure S3. 1, ¹¹B{¹H} NMR, C₆D₆, 128.3 MHz, 298 K

Figure S4. 2, ¹H NMR, THF-d₈, 400 MHz, 298 K (\mathbf{x} = pentane and Et₂O impurity)

Figure S5. 2, ¹³C{¹H} NMR, C₆D₆, 100 MHz, 298 K

Figure S6. 2, ³¹P{¹H} NMR, THF-d₈, 161.8 MHz, 298 K

Figure S7. 2, ¹¹B{¹H} NMR, C₆D₆, 128.3 MHz, 298 K

Figure S8. 3, ¹H NMR, C₆D₆, 400 MHz, 298 K (\mathbf{x} = pentane and Et₂O impurity)

Figure S9. 3, ¹³C{¹H} NMR, C₆D₆, 100 MHz, 298 K

Figure S10. 3, ³¹P{¹H} NMR, C₆D₆, 161.8 MHz, 298 K

Figure S11. 3, ¹¹B{¹H} NMR, C₆D₆, 128.3 MHz, 298 K

Figure S12. 4, ¹H NMR, C₆D₆, 400 MHz, 298 K

Figure S13. 4, ${}^{13}C{}^{1}H$ NMR, C₆D₆, 100 MHz, 298 K

Figure S14. 4, ${}^{31}P{}^{1}H$ NMR, C₆D₆, 161.8 MHz, 298 K

Figure S15. 4, ¹¹B{¹H} NMR, C₆D₆, 128.3 MHz, 298 K (small signal at $\delta_B = 31.2$ ppm is for the boroxin, (MesBO)₃)

Figure S16. 4, FT-IR ATR, solid film, 298 K

Figure S17. 5, ¹H NMR, C₆D₆, 400 MHz, 298 K (\mathbf{x} = pentane and Et₂O impurity)

Figure S18. 5, ¹³C{¹H} NMR, C₆D₆, 100 MHz, 298 K

Figure S19. 5, ³¹P{¹H} NMR, C₆D₆, 161.8 MHz, 298 K

Figure S20. 5, ¹¹B{¹H} NMR, C₆D₆, 128.3 MHz, 298 K

Figure S21. 5, FT-IR ATR, solid film, 298 K

Figure S22. 6, ¹H NMR, C₆D₆, 400 MHz, 298 K (inset shows expansion of Pt-C<u>H</u>₃ signal, \mathbf{x} = pentane and Et₂O impurity)

Figure S23. 6, ${}^{13}C{}^{1}H$ NMR, C₆D₆, 100 MHz, 298 K (inset shows expansion of Pt-<u>C</u>H₃ signal)

Figure S24. 6, ³¹P{¹H} NMR, C₆D₆, 161.8 MHz, 298 K

Figure S25. 6, ${}^{11}B{}^{1}H{}$ NMR, C₆D₆, 128.3 MHz, 298 K (inset shows ${}^{11}B{}^{1}H{}$ NMR using a quartz tube)

Figure S26. 10, ¹H NMR, C₆D₆, 400 MHz, 298 K (**x** = pentane and Et₂O impurity)

Figure S28. 10, ³¹P{¹H} NMR, C₆D₆, 161.8 MHz, 298 K

Figure S29. 10, ¹¹B{¹H} NMR, C₆D₆, 128.3 MHz, 298 K

Electrochemical Details:

Cyclic voltammetry (CV) measurements were carried out in a glovebox under an N_2 atmosphere in a one-compartment cell using a CH Instruments 600B electrochemical analyzer. A glassy carbon electrode was used as the working electrode and a carbon rod was used as the auxiliary electrode. The reference electrode was AgOTf/Ag in THF isolated by a CoralPorTM frit (obtained from BASi). The ferrocenium/ferrocene couple (Fc⁺/Fc) was used as an external reference. THF solutions of electrolyte (0.2 M [NBu₄][PF₆]) and analyte (1 mM) were also prepared under an inert atmosphere.

Figure S30. 2, CV, THF, 298 K showing quasi-reversible wave for the proposed boronbased reduction at *ca.* - 2.65 V.

Crystallographic details:

All crystals were mounted on a glass fiber loop. All measurements were made using graphite-monochromated Mo K_{α} radiation (λ =0.71073 Å) on either a Bruker AXS KAPPA APEX II diffractometer coupled to an APEX II CCD detector (**3**, **6**, and **10**) or a Bruker AXS D8 VENTURE KAPPA diffractometer coupled to a PHOTON 100 CMOS detector (**2** and **5**). The structures were solved by direct methods³ and refined by full-matrix least-squares procedures on F2 (SHELXL-2013)³ using the OLEX2 interface.⁴ All hydrogen atoms were placed in calculated positions. Non-hydrogen atoms were refined anisotropically.

Additional details:

3: This crystal structure contained residual electron density assignable to two disordered THF molecules. OLEX2 was used to identify voids and a solvent mask was applied [Void volume = 661.8 Å^3 corresponding to 160.1 electrons]. This application gave a good improvement of data statistics.

6: A level alerts persist in the *checkcif* file related to 'Calcd Residual Density' close to the heavy Pt center.

10: This crystal structure contained electron density assignable to a disordered pentane molecule about an inversion center. OLEX2 was used to identify voids and a solvent mask was applied [two void volumes = 266.6 Å³ corresponding to 27.8 electrons each]. This application gave a good improvement of data statistics. The B-X groups (X = CH₃ or I) were split over two positions and modeled as a 45/55 split.

[**Pt(HPPh₂)(μ-PPh₂)I]**₂: This crystal is a twin. The following twin law was obtained: **TWIN LAW** (-1.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, 1.0), **BASF** [0.3219(8)] using OLEX2.

CCDC **1581574-1581579** contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre *via* www.ccdc.cam.ac.uk/data_request/cif.

Compound	2	3
Empirical formula	$C_{41}H_{43}BNiP_2$	$C_{43}H_{39}BN_2NiP_2$
Formula weight	667.21	715.22
Temperature/K	100(2)	100(2)
Crystal system	Orthorhombic	Triclinic
Space group	$Pna2_1$	<i>P-1</i>
a/Å	16.2090(5)	11.0162(11)
b/Å	12.6755(5)	13.4010(14)
c/Å	16.7152(7)	16.5488(17)
a/°	90	110.291(5)
β/°	90	98.272(6)
γ/°	90	94.867(6)
V/Å ³	3434.3(2)	2243.6(4)
Ζ	4	2
$\rho/g/cm^{-3}$	1.290	1.059
$\mu/\text{ mm}^{-1}$	0.687	0.531
F(000)	1408.0	748.0
Crystal size/ mm ³	$0.34 \times 0.28 \times 0.16$	$0.23 \times 0.22 \times 0.12$
Radiation	MoK α ($\lambda = 0.71073$)	MoK α ($\lambda = 0.71073$)
2θ range for data collection/°	4.752 to 61.116	3.274 to 59.628
	$-22 \le h \le 20, -17 \le k \le 18, -$	$-15 \le h \le 15, -18 \le k \le 18, -$
Index ranges	$23 \le l \le 22$	$22 \le l \le 22$
	9731 [$R_{int} = 0.0897$, $R_{sigma} =$	12328 [$R_{int} = 0.0782, R_{sigma} =$
Independent reflections	0.1185]	0.0781]
Data/restraints/parameters	9731/430/409	12328/435/445
Goodness-of-fit on F^2	1.011	1.011
$R [I \ge 2\theta (I)] (R1, wR2)$	$R_1 = 0.0532, wR_2 = 0.0722$	$R_1 = 0.0658, wR_2 = 0.1757$
R (all data) (R1, wR2)	$R_1 = 0.1009, wR_2 = 0.0816$	$R_1 = 0.0868, wR_2 = 0.1902$
Largest diff. peak/hole / (e Å ⁻³)	0.67/-0.42	2.02/-1.36
Flack parameter	0.009(8)	

Table S1. Crystallographic data for **2** and **3**:

 $R1 = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|; wR2 = [\Sigma(w(F_o^2 - F_c^2)^2) / \Sigma w(F_o^2)^2]^{1/2}$

Compound	5	6
Empirical formula	$C_{52}H_{53}BNiP_2$	$C_{35}H_{37}BP_2Pt$
Formula weight	809.40	725.48
Temperature/K	100(2)	100(2)
Crystal system	Triclinic	Triclinic
Space group	P-1	P-1
a/Å	12.1658(7)	10.4431(11)
b/Å	13.5588(9)	12.0491(12)
c/Å	14.0817(9)	13.1755(12)
$\alpha/^{\circ}$	77.118(2)	96.138(7)
β/°	70.587(2)	109.587(7)
γ/°	85.824(2)	100.699(7)
V/Å ³	2135.6(2)	1508.9(3)
Ζ	2	2
$\rho/g/cm^{-3}$	1.259	1.597
$\mu/\text{ mm}^{-1}$	0.564	4.778
F(000)	856.0	720.0
Crystal size/ mm ³	$0.27\times0.16\times0.16$	$0.25 \times 0.19 \times 0.08$
Radiation	MoKa ($\lambda = 0.71073$)	MoKa ($\lambda = 0.71073$)
2θ range for data collection/°	4.698 to 58.302	3.338 to 55.576
	$-16 \le h \le 16, -18 \le k \le 18, -$	$-13 \le h \le 13, -15 \le k \le 15, -$
Index ranges	$19 \le l \le 19$	$17 \le l \le 17$
	11513 [$R_{int} = 0.0914$, $R_{sigma} =$	$6510 [R_{int} = 0.0791, R_{sigma} =$
Independent reflections	0.0610]	0.0899]
Data/restraints/parameters	11513/0/510	6510/336/357
Goodness-of-fit on F^2	1.046	1.051
$R [I \ge 2\theta (I)] (R1, wR2)$	$R_1 = 0.0575, wR_2 = 0.1215$	$R_1 = 0.0567, wR_2 = 0.1341$
R (all data) (R1, wR2)	$R_1 = 0.0922, wR_2 = 0.1348$	$R_1 = 0.0845, wR_2 = 0.1487$
Largest diff. peak/hole / (e Å ⁻³)	1.46/-1.18	4.24/-1.86
	$\Sigma(-(T_{1}^{2}) - T_{2}^{2}) + \Sigma_{-}(T_{2}^{2})^{2} + \frac{1}{2}$	

Table S2. Crystallographic data for **5** and **6**:

 $R1 = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|; wR2 = [\Sigma(w(F_o^2 - F_c^2)^2) / \Sigma w(F_o^2)^2]^{1/2}$

Compound	10	[Pt(HPPh ₂)(µ-PPh ₂)I] ₂
Empirical formula	$C_{70.88}H_{74.65}B_2I_{1.12}OP_4Pt$	$C_{48}H_{42}I_2P_4Pt_2$
Formula weight	1424.94	1386.67
Temperature/K	100(2)	100(2)
Crystal system	Monoclinic	Monoclinic
Space group	$P2_1/n$	$P2_{1}/n$
a/Å	12.3295(6)	10.4494(6)
b/Å	19.2099(9)	9.2354(5)
c/Å	27.5709(13)	23.1562(13)
α/°	90	90
β/°	94.522(2)	90.078(2)
γ/°	90	90
V/Å ³	6509.8(5)	2234.7(2)
Ζ	4	2
$\rho/g/cm^{-3}$	1.454	2.061
$\mu/\text{ mm}^{-1}$	2.826	7.811
F(000)	2861.0	1304.0
Crystal size/ mm ³	$0.2\times0.16\times0.12$	$0.22\times0.18\times0.12$
Radiation	MoKa ($\lambda = 0.71073$)	MoK α ($\lambda = 0.71073$)
2θ range for data collection/°	2.964 to 60.128	4.274 to 61.014
	$-16 \le h \le 16, -26 \le k \le 26, -$	$-14 \le h \le 14, -13 \le k \le 13, -$
Index ranges	$37 \le l \le 37$	$33 \le l \le 32$
	17777 [$R_{int} = 0.0766, R_{sigma} =$	$6818 [R_{int} = 0.0689, R_{sigma} =$
Independent reflections	0.0392]	0.0572]
Data/restraints/parameters	17777/6/750	6818/0/254
Goodness-of-fit on F^2	1.072	1.089
$R [I \ge 2\theta (I)] (R1, wR2)$	$R_1 = 0.0334, WR_2 = 0.0722$	$R_1 = 0.0350, wR_2 = 0.0698$
R (all data) (R1, wR2)	$R_1 = 0.0486, wR_2 = 0.0757$	$R_1 = 0.0467, wR_2 = 0.0804$
Largest diff. peak/hole / (e Å ⁻³)	2 48/-1 19	1 34/-1 58

 Table S3. Crystallographic data for 10 and [Pt(HPPh2)(µ-PPh2)I]2:

 $R1 = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|; wR2 = [\Sigma(w(F_o^2 - F_c^2)^2) / \Sigma w(F_o^2)^2]^{1/2}$

Figure S31. ORTEP depiction of the solid-state molecular structure of $[Pt(HPPh_2)(\mu - PPh_2)I]_2$ isolated as an impurity from reaction of ligand 1 and 0.25 equiv. of $[Pt(CH_3)_3I]_4$ (displacement ellipsoids are shown at the 50% probability). Selected bond lengths [Å]: Pt(1)-I(1) 2.6567(5), Pt(1)-P(1) 2.306(2), Pt(1)-P(2) 2.326(2).

References:

- 1 R. A. Bartlett, H. Dias and P. P. Power, *Inorg. Chem.*, 1988, 27, 3919–3922.
- 2 S. C. Cole, M. P. Coles and P. B. Hitchcock, Dalton Trans., 2003, 3663.
- 3 G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr., 2008, 64, 112–122.
- 4 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. *Appl. Crystallogr.*, 2009, **42**, 339–341.