Electronic Supplementary Information (ESI)

Multi-molecular emission of a cationic Pt(II) complex through hydrogen bonding interaction.

Kaho Yamaguchi, a Kazuma Yamawaki, a Takuya Kimura, a Junpei Kuwabara, a Takeshi Yasuda, b Yoshinobu Nishimura, c and Takaki Kanbara a

a Tsukuba Research Center for Energy Materials Science (TREMS), Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan. E-mail: kuwabara@ims.tsukuba.ac.jp, kanbara@ims.tsukuba.ac.jp

b Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan.

c Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan.

![Emission spectra of Pt·Cl in a mixture of CHCl₃ and methanol (10 μM).](image)

Fig. S1 Emission spectra of Pt·Cl in a mixture of CHCl₃ and methanol (10 μM).
Fig. S2 Structure of the neutral Pt complex and its emission spectra at various concentration.

Fig. S3 Proposed structures with hydrogen bonding based on the 1H and DOSY NMR spectra.
Fig. S4 Absorption spectra of (a) Pt·B(C₆F₅)₄, (b) Pt·Cl, and (c) Pt·PF₆ in CHCl₃ at various concentrations.
Fig. S5 1H NMR spectrum of Pt-PF$_6$ (600 MHz, C$_2$D$_2$Cl$_4$, 4.0×10$^{-3}$ M, 353 K).
Analysis for DOSY NMR

Einstein–Stokes equation

\[D = \frac{kT}{6\pi\eta R_H} \rightarrow R_H = \frac{6\pi \cdot \eta}{kT} \cdot \frac{D}{R_H} \]

\(D \): Diffusion constant, \(k \): Boltzmann’s constant, \(T \): Absolute temperature, \(\eta \): Viscosity of the medium, \(R_H \): Hydrodynamic radius

\[\frac{R_H(\text{Pt} \cdot \text{Cl})}{R_H(\text{Pt} \cdot \text{B}(C_6F_5)_4)} = \frac{D(\text{Pt} \cdot \text{B}(C_6F_5)_4)}{D(\text{Pt} \cdot \text{Cl})} = 1.29 \]

\[\frac{V(\text{Pt} \cdot \text{Cl})}{V(\text{Pt} \cdot \text{B}(C_6F_5)_4)} = 1.29^3 \approx 2.2 \]

Analysis for kinetic traces

\[\text{Pt} \cdot \text{B}(C_6F_5)_4 \]

\[I = A + B \exp(t/\tau_1) \]

\(\tau_1 = 8.516421 \times 10^{-6} \text{ sec} \)

S.Dev = 2.512945 \times 10^{-8} \text{ sec}

\(A = 2.141593 \)

S.Dev = 0.1749661

\(B = 874.4274 \)

S.Dev = 1.420067

CHISQ = 0.9974415 [2579 degrees of freedom]
Pt·Cl

\[I = A + B_1 \exp(t/\tau_1) + B_2 \exp(t/\tau_2) \]

\[\tau_1 = 3.44983 \times 10^{-7} \text{ sec} \quad \text{S.Dev} = 1.30092 \times 10^{-8} \text{ sec} \]

\[\tau_2 = 8.948246 \times 10^{-7} \text{ sec} \quad \text{S.Dev} = 6.579976 \times 10^{-9} \text{ sec} \]

\[A = 7.643316 \quad \text{S.Dev} = 0.627084 \]

\[B_1 = -1711.312 \quad \text{S.Dev} = 12.82049 \]

\[B_2 = 2461.328 \quad \text{S.Dev} = 8.43819 \]

CHISQ = 1.018696 [568 degrees of freedom]

Pt·PF\textsubscript{6}

\[I = A + B_1 \exp(t/\tau_1) + B_2 \exp(t/\tau_2) \]

\[\tau_1 = 5.019333 \times 10^{-8} \text{ sec} \quad \text{S.Dev} = 2.823604 \times 10^{-9} \text{ sec} \]

\[\tau_2 = 9.721266 \times 10^{-7} \text{ sec} \quad \text{S.Dev} = 2.838167 \times 10^{-9} \text{ sec} \]

\[A = 8.996995 \quad \text{S.Dev} = 0.2226138 \]

\[B_1 = -247.476 \quad \text{S.Dev} = 5.820917 \]

\[B_2 = 1025.245 \quad \text{S.Dev} = 1.346489 \]

CHISQ = 1.023361 [3997 degrees of freedom]