Supporting Information

A robust polyoxometalate-templated four-fold interpenetrating metal-organic framework showing efficient organic dyes photodegradation in various pH aqueous solution

Min Liu,#a Xu-Feng Yang,#a Hai-Bin Zhu,*a Bao-Sheng Di, a Yue Zhao*b

^a School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China

^b Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Nanjing University Nanjing 210023 China

Fig. S1 (a) Coordination environment of Cd atom in 1. (b) Coordination geometry of Cd nodes. (c)

Coordination mode of **TTPB-4** ligand.

Fig. S2 (a) Quadrilateral channel A (19.56 \times 17.05 Å) in 1. (b) Hexagon channel B (33.37 \times 23.65

Å, Cd-to-Cd distance at opposite position) in 1.

Fig. S3 View of the position of POMs in the four-fold interpenetrating structure of 1.

Fig. S4 (a) Powder X-ray diffraction (PXRD) patterns of compound 1. (b) TGA curves of compound 1. (c) Solid-state UV-Vis absorption spectra of ligand TTPB-4 (red line) and crystal 1 (black line). (d) Photoluminescent spectra of TTPB-4 and crystal 1 in DMF solution at room temperature.

Fig. S5 (a) Photodegradation efficiency of CV with 1, POM as well as 1/tert-butanol. (b) Degradation efficiency of CV under different conditions.

Fig. S6 Fluorescence spectra of TTPB-4 in DMF solution with (black line) or without POM (red

line).

Fig. S7 PXRD patterns of 1 during photocatalysis process in different initial pH.

Fig. S8 ¹H NMR of TTPB-4.

Table S1 Reported POM-MOFs	for dyes photodegradation.
----------------------------	----------------------------

Formula	Dyes	Photodegradation efficiency	Irradiation time	Light	Ref.
$[Cu(H_{2}tda)(H_{2}O)_{2}]_{4}[SiW_{12}O$ $_{40}]\cdot 12H_{2}O$	RhB	90%	360min	UV	1
$ \{ [Ag_5(INA)_5(HINA)] [H_3PM \\ 1_2O_{40}] (H_2O) \} \cdot H_2O $	GV	91.2%	70min	UV	2
$\label{eq:2.1} \begin{split} &\{[Ag_5(INA)_5(HINA)][H_3PM \\ & \\ & \\ 1_2O_{40}](H_2O)\} \!\cdot\! H_2O \end{split}$	MB	95.6%	90min	UV	2
$\begin{array}{c} H_2[Cu_{11}(btb)_{19}(H_2O)_6(P_2W_{16}\\ \\ {}^{VI}W_2{}^{V}O_{62})_3]\cdot 12H_2O \end{array}$	MB	81.5%	150min	UV	3
$[\{Cu^{II}_{6}Cu^{I}_{10}(H_{2}O)_{5}(pzc)_{10}(pz \\)_{6}\}\{P_{2}W_{18}O_{62}\}_{2}]\cdot 4H_{2}O$	RhB	92.18%	120min	UV	4

$[\{Cu^{II}_{6}Cu^{I}_{10}(H_{2}O)_{5}(pzc)_{10}(pz \\)_{6}\}\{P_{2}W_{18}O_{62}\}_{2}]\cdot 4H_{2}O$	MB	97.41%	120min	UV	4
[H ₂ L][CuL][SiW ₁₂ O ₄₀]·2H ₂ O	MB	89.5%	90min	UV	5
$[CuL]_4[GeW_{12}O_{40}]\cdot H_2O$	MB	84.7%	90min	UV	5
$[Cu_{2}(btx)_{2}(C_{2}O_{4})][H_{2}SiW_{12}$ $O_{40}]\cdot 12H_{2}O$	MB	78.1%	60min	Visible	6
$[Cu_{2}(btx)_{2}(C_{2}O_{4})][H_{2}SiW_{12}$ $O_{40}]\cdot 12H_{2}O$	MB	91.35%	60min	UV	6
[Cd(TTPB- 4)(DMF) ₃] ₄ [PMo ₁₂ O ₄₀] ₂ [HP Mo ₁₂ O ₄₀] @ 11DMF	CV	94.3%	36min	UV- Vis	This work
[Cd(TTPB- 4)(DMF) ₃] ₄ [PMo ₁₂ O ₄₀] ₂ [HP Mo ₁₂ O ₄₀] © 11DMF	BR 2	95.0%	18min	UV- Vis	This work

				_
Cd1—N1 ⁱⁱⁱ	2.258 (8)	Cd1—N1 ^{iv}	2.258 (8)	-
Cd1—01	2.292 (11)	Cd1—O1 ⁱⁱⁱ	2.292 (11)	
Cd1—O1 ^{iv}	2.292 (11)	Cd1—N1	2.258 (8)	
N1-Cd1-N1 ⁱⁱⁱ	95.9 (3)	N1—Cd1—N1 ^{iv}	95.9 (3)	
N1 ⁱⁱⁱ —Cd1—N1 ^{iv}	95.9 (3)	N1—Cd1—O1	172.5 (4)	
N1 ⁱⁱⁱ —Cd1—O1	91.6 (4)	N1 ^{iv} —Cd1—O1	84.2 (4)	
N1—Cd1—O1 ⁱⁱⁱ	84.2 (4)	N1 ⁱⁱⁱ —Cd1—O1 ⁱⁱⁱ	172.5 (4)	

N1 ^{iv} —Cd1—O1 ⁱⁱⁱ	91.6 (4)	O1-Cd1-O1 ⁱⁱⁱ	88.3 (6)
N1-Cd1-O1 ^{iv}	91.6 (4)	N1 ⁱⁱⁱ —Cd1—O1 ^{iv}	84.2 (4)
N1 ^{iv} —Cd1—O1 ^{iv}	172.5 (4)	O1—Cd1—O1 ^{iv}	88.3 (6)
O1 ⁱⁱⁱ —Cd1—O1 ^{iv}	88.3 (6)		

Symmetry codes: Symmetry codes: (i) y-1/2, -z+1/2, -x; (ii) -z, x+1/2, -y+1/2; (iii) z, x, y;(iv) y, z, x; (v) z-1/4, -y+1/4, -x+7/4; (vi) -z+7/4, -y+1/4, x+1/4; (vii) -x+3/2, y, -z+2.

BVP	R	S	BVP	R	S	BVP	R	S
Mo1—O2	1.671	1.8923	Mo2—O5	1.681	1.8419	Mo3—O7	1.7	1.7497
Mo1—O8	1.892	1.0413	Mo2—O4	1.88	1.0757	Mo3—O9	1.867	1.1141
Mo1—O3	1.9	1.0190	Mo2—O11	1.904	1.0081	Mo3—O11	1.892	1.0413
Mo1—O4	1.9	1.0190	Mo2—O3	1.923	0.9576	Mo3—O6	1.928	0.9448
Mo1—O9	1.95	0.8902	Mo2—O6	1.939	0.9171	Mo3—O8	1.939	0.9171
Mo1—O10	2.398	0.2652	Mo2—O10	2.429	0.2439	Mo3—O10	2.415	0.2533
Calculated v	Calculated value		75 Calculated value		6.0445	Calculated v	alue	6.0205

Table S3 The bond valence sum (BVS) calculations of 1

References.

[1] J. W. Sun, P. F. Yan, G. H. An, J. Q. Sha, C. Wang and G. M. Li, *Dalton Trans.*, 2016, **45**, 1657-1667.

[2] X. L. Wang, G. Song, H. Y. Lin, X. Wang, G. C. Liu and X. Rong, *Inorg. Chem. Commun.*, 2017, 84, 168-173.

[3] S. Li, L. Zhang, K. P. O'Halloran, H. Ma and H. Pang, Dalton Trans., 2015, 44, 2062-2065.

[4] L. Fan, K. Yu, J. Lv, H. Zhang, Z. Su, L. Wang, C. Wang and B. Zhou, *Dalton Trans.*, 2017, 46, 10355-10363.

[5] H. F. Hao, W. Z. Zhou, H. Y. Zang, H. Q. Tan, Y. F. Qi, Y. H. Wang, Y. G. Li, *Chem. Asian J.* 2015, **10**, 1676 – 1683.

[6] D. F. Chai, M. Wang, C. Zhang, F. Ning, W. Xu, H. Pang and H. Ma, *Inorg. Chem. Commun.*, 2017, 83, 16-19.