Phosphinecarboxamide as an unexpected phosphorus precursor for the chemical vapour deposition of zinc phosphide thin films

Samuel V. F. Beddoe, Samuel D. Cosham, Alexander N. Kulak, Andrew R. Jupp, Jose M. Goicoechea and Geoffrey Hyett

1 Department of Chemistry, University of Southampton, Southampton, SO17 1BJ, United Kingdom
2 Department of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
3 Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK

ABSTRACT:

This paper demonstrates the use of phosphinecarboxamide (PCA) as a facile phosphorus precursor, which can be used alongside zinc acetate for the chemical vapour deposition (CVD) of adherent and crystalline zinc phosphide films. Zinc phosphide thin films have a number of potential applications and PCA has a number of advantages over the highly toxic, corrosive and flammable phosphine used in previous CVD syntheses.

SUPPORTING INFORMATION
Figure S1. Rietveld refinement fits for the zinc phosphide (Zn$_3$P$_2$) films deposited at different temperatures.
Figure S2. Tauc plots for Zn$_3$P$_2$ films deposited at different temperatures.
Figure S3. Side-on SEM images and EDX maps of the films deposited at different temperatures. The EDX maps show signals from oxygen K-lines as blue pixels, phosphorus K-lines as yellow pixels and zinc K-lines as red pixels.
Figure S4. NMR data collected on zinc acetate (30 mmol) and phosphinecarboxamide (30 mmol) in methanol solution. Upper diagram shows large sweep width of ^{31}P NMR (top, blue) and $^{31}\text{P}\{^1\text{H}\}$ (bottom red). The lower figure shows the same spectra but scaled to show details of splitting patterns.