Ni$_4$Na$_2$-Phenyldilsesquioxane: Synthesis, Structure, and Slow Dynamic Behaviour

Alena N. Kulakova,* a,b,c Alexey N. Bilyachenko*, a,b Alexander A. Korlyukov, a,d Jérôme Long, c Mikhail M. Levitsky, a Elena S. Shubina, a Yannick Guari c and Joulia Larionova b,c

EXPERIMENTAL SECTION

Materials.
Phenyltrimethoxygermane was purchased from ABCR as used as received.

Synthesis
PhGe(OMe)$_3$ (2.00 g, 8.2 mmol) was dissolved in 45 mL of ethanol. Then 0.33 g (8.2 mmol) of NaOH was added, and the resulting mixture was heated to reflux for 2.5 h. Afterward 0.76 g (3.30 mmol) of Ni(NH$_3$)$_6$Cl$_2$ was added at once. The resulted mixture was heated to reflux for 12 h. Filtration of the mixture from insoluble part gave yellow-colored solution. Slow evaporation of solvents (ethanol/methanol) gave in 10 days crystalline material. Several crystals (yellow-green prisms) were used for the single crystal X-ray diffraction analysis. Anal. calcd for C$_{60}$H$_{50}$Ge$_{10}$Na$_2$Ni$_4$O$_{20}$: Ge, 34.62; Ni, 11.19; Na, 2.19. Found (using XRF VRA-30 spectrometer for vacuum-dried sample): Ge, 34.50; Ni, 11.06; Na, 2.12. Yield 0.64 g (30%).

IR spectrum (Fig. S8) was recorded on Shimadzu IR Prestige21 FTIR spectrometer in KBr pellets. UV−vis absorption spectrum (Fig. S8) was recorded on a Varian Cary 50 spectrophotometer in cells with 10 mm optical path lengths.

Crystal Data for C$_{42}$H$_{65}$Ge$_5$Na$_2$Ni$_2$O$_{18}$ ($M = 1361.30$ g/mol): monoclinic, space group P2$_1$/n (no. 14), a = 15.328(3) Å, b = 22.205(4) Å, c = 16.163(3) Å, $\beta = 102.383(3)^\circ$, $V = 5373.0(15)$ Å3, $Z = 4$, $T =$ 120 K, μ(MoKα) = 3.519 mm$^{-1}$, $D_{calc} = 1.683$ g/cm3, 93790 reflections measured (3.668$^\circ \leq \Theta \leq 61.016^\circ$), 16377 unique ($R_{int} = 0.0990$, $R_{sigma} = 0.0723$) which were used in all calculations. The final R_1 was 0.0794 ($1 > 2\sigma(I)$) and wR_2 was 0.2012 (all data). Single crystals of C$_{42}$H$_{65}$Ge$_5$Na$_2$Ni$_2$O$_{18}$ were green prisms. X-ray dataset was measured on Bruker APEX-II CCD diffractometer at 120 K. Using Olex2,51 the structure was solved with the olex2.solve52 structure solution program using Charge Flipping and refined with the ShelXL53 refinement package using Least Squares minimisation.
Comparison of structural parameters of Ge-based ligands of \(\text{Ni}_2\text{Na}_2 \) and \(\text{Fe}_3\text{Na}_5 \)-based phenylgermaniumsesquioxanes

Table S1

<table>
<thead>
<tr>
<th></th>
<th>Ni (this work)</th>
<th>Fe (ref. 9a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ge-O(Ni)</td>
<td>1.71 – 1.74 Å</td>
<td>Ge-O(Fe)</td>
</tr>
<tr>
<td>Ge-O(Ge)</td>
<td>1.76 – 1.78 Å</td>
<td>1.73 – 1.77 Å</td>
</tr>
<tr>
<td>(\angle) Ge-O-Ge</td>
<td>120.5 - 126.3°</td>
<td>Ge-O(Ge)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.75 – 1.78 Å</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\angle) Ge-O-Ge</td>
</tr>
<tr>
<td></td>
<td></td>
<td>120.5 – 126.3°</td>
</tr>
</tbody>
</table>
Figure S1. General scheme for the synthesis of 1.

Figure S2: Left: Temperature dependence of χT under a 1000 Oe DC field. Right: Field dependence of the magnetization at 1.8 K.
Figure S3: Hysteresis loop at 1.8 K

Figure S4: ZFC/FC curves obtained with an applied magnetic fields a dc field of 100 Oe. The ZFC curve shows the presence of two maxima, T_{max}, located around 4.5 and 10.5 K respectively. On the other hand, the FC curve continuously increases and separate from the ZFC curve around 13 K, which corresponds to an irreversible temperature $T_{i\text{rr}}$. Hence, these results confirm the presence of a magnetic irreversibility, which could originate from a slow relaxation of the magnetization.
Figure S5: Temperature dependence of relaxation time for 1.

Note that fitting of the relaxation time by using the critical scaling law of the spin dynamics, $\tau = \tau_0 [T_g/(T_{\text{max}} - T_g)]^{z_v}$ (where T_g is the glass temperature, and z_v is a critical exponent) did not give the satisfactory results. The best obtained parameters are: $T_g = 5.07$ K and $z_v = 3.2$ (LT process) and $T_g = 6.71$ K and $z_v = 14.2$ (HT process). For both of them, the z_v critical exponent is found slightly out of the range to what is expected for spin glass systems ($4 < z_v < 12$).

Figure S6: Temperature dependence of the in-phase and out-of-phase susceptibilities measured with various dc magnetic fields for 1.
Figure S7: Field dependence of the temperature maximum of χ'' as a function of the magnetic field (Almeida–Thouless line) for the LT process.

Figure S8: IR spectrum of 1
Figure S9. UVvis spectrum of 1

