Supporting information

Constructing ZnIn₂S₄ nanoparticles/MoS₂-RGO nanosheets 0D/2D heterojunction for significantly enhanced visible-light photocatalytic H₂ production

Zhongjie Guan^{a,b,*}, Peng Wang^a, Qiuye Li^{a,*}, Guoqiang Li^b, Jianjun Yang^a

^aNational & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Collaborative Innovation Center of Nano Functional Materials and Applications of Henan Province, Henan University, Kaifeng 475004, China

^bKey Laboratory of Photovoltaic Materials of Henan Province, School of Physics & Electronics, Henan University, Kaifeng 475004, China

*To whom correspondence should be addressed, E-mail: guanzj@henu.edu.cn; qiuyeli@henu.edu.cn

Fig. S1 XPS spectra of Zn 2p (a), In 3d (b) and S 2p (c) for pure $ZnIn_2S_4$ and $ZnIn_2S_4+2\%M10G1$ composite samples.

Fig. S2 XPS spectra of C 1s for RGO and ZnIn₂S₄+2%M10G1 composite sample.

Fig. S3 XPS spectra of Mo 3d (a) and S 2p (b) for MoS₂ and ZnIn₂S₄+2%M10G1 composite samples.

Fig. S4 H_2 evolution rates of $ZnIn_2S_4+0.5\%M10G1$ and $ZnIn_2S_4+0.05\%RGO$ samples under visible light irradiation (λ >420 nm).

Fig. S5 XRD patterns of cubic $ZnIn_2S_4+0.5\%M10G1$ and hexagonal $ZnIn_2S_4+0.5\%M10G1$ samples.

Fig. S6 TEM images of cubic $ZnIn_2S_4+0.5\%M10G1$ (a) and hexagonal $ZnIn_2S_4+0.5\%M10G1$ samples (b).

Fig. S7 H₂ evolution rates of cubic ZnIn₂S₄+0.5%M10G1 and hexagonal ZnIn₂S₄+0.5%M10G1 samples under visible light irradiation (λ >420 nm).

Fig. S8 The plots of $(\alpha h\nu)^2$ vs. hv for cubic ZnIn₂S₄.