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S1. SEM images of the pristine powder used to manufacture tin phosphide electrodes obtained using a Zeiss
1550 SEM using the in-lens detector and an acceleration voltage of 2.5 kV.
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S2. N, adsorbtion-desorbtion isotherms of pristine tin phosphide powder measured on a micromeritics ASAP
2020 instrument. The sample mass was 0.995 g and BET Surface area was determined to 0.9623 m?.g™.
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S3. X-ray diffraction pattern of the pristine Sn,P; powder used to manufacture tin phosphide electrode. Rietveld
refinement (red line) of pure Sn,P; powder collected with single wavelength Cu Ko radiation (A = 1.5418 A). The
positions of the allowed reflections are marked with vertical blue lines. The green curve indicates the difference
between the observed data and refined model. This diffractogram is from our previous work: R. Mogensen, J.
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Maibach, W. R. Brant, D. Brandell and R. Younesi, Electrochim. Acta, 2017, 245, 696—704.

S4. Cyclic voltammetry on the same samples as in the main text but with selected cycles up to cycle 100 displayed.
Electrodes using NaFSI electrolyte (left) and NaPFs electrolyte (right) were both cycled atl mV.S* scan rate
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Figure S5 displays discharge and charge capacities for cells with either NaPFg or NaFSI
electrolyte salts. The relaxation/pause was applied after 10 cycles. While the tests showed
clear and repeatable results in all the cells with NaPFg salt, the technique could not resolve
any difference for the NaFSl salt and four different cells are displayed to show that this was
consistent behavior for all the cells with NaFSlI.
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S5. Cell capacities before and after pause/relaxation for all the tests including the results for cells with NaFSl.



Intensity (a.u.)

15, 20 25 300 35 40 45 80 55 60
20 (degrees)

S6. X-ray powder diffraction pattern of the pristine Prussian blue powder used to manufacture cathodes for full
cells. Collected using single wavelength Cu Ko radiation (A = 1.5418 A).
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S7. SEM images of pristine powder used to manufacture Prussian blue cathodes obtained using a Zeiss 1550
SEM using the in-lens detector and an acceleration voltage of 2.5 kV.
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S8. Galvanostatic cycling data from a half-cell consisting of Prussian blue vs. sodium metal. The cell was cycled
at 10 mA.g* current density using 1 M NaPFg in EC:DEC electrolyte with 10 wt% FEC additive. Mass loading of

the 13 mm electrode was 9.3 mg Prussian blue.



HAXPES:
The HAXPES spectra using the photon energy of 6015 eV was performed on the same samples
as in the main text. Since the photon energy of 6015 eV results in deeper probing depth, some
differences appear such as in the case for Sn 3d where hardly any difference between the cut-
off potentials can be seen. For all other elements the results are very similar to the 2005 eV
spectra.
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S9. HAXPES spectra of tin-phosphide electrodes measured with photon energy of 6015 eV.

As the lower desodiation voltage could lead to an unintentional form of capacity limitation,
we tested it by adding together all discharge capacities up to cycle 50 where all cells using the
high desodiation potential showed severe capacity drop. To the left in figure S10 the
accumulated discharge capacity is plotted. The discharge capacity is from the cells displayed
to the right in the capacity vs. cycle number plot. The cells using the lower desodiation
potential continue to show significant discharge capacities well after 50 cycles while their high
desodiation potential counterparts provided very limited capacities per cycle after this point.
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S$10. Accumulated discharge capacity of half-cells cycled galvanostatically for 50 cycles (left) and cycling data
for source cells (right).



