Supporting Information

Unravelling the Spin-state of solvated [Fe(bpp)₂]²⁺ Spin-crossover Complexes: Structure-Function Relationship

Maria del Carmen Giménez-López^a,* Miguel Clemente-León^b, Carlos Giménez-Saiz^b. ^aCentro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain. E-mail: <u>Maria.Gimenez.Lopez@usc.es</u>

^bInstituto de Ciencia Molecular, Universidad de Valencia, P.O. Box 22085, 46071 Valencia, Spain

Figure S1: View of the crystal structure of the hydrated salt $[Fe(bpp)_2][N(CN)_2]_2 \cdot 1H_2O$ (2) showing the first and second coordination spheres for the Fe²⁺ cation. Carbon, nitrogen and hydrogen atoms are shown as black, blue and light-pink, respectively.

Figure S2: (a) A projection of the crystal structure of **2** showing (a) alternating cationic and anionic layers onto the *zy* plane and (b) the arrangement of $[Fe(bpp)_2]^{2+}$ units onto the *xz* plane (yellow lines refer to $\pi - \pi$ interactions). H atoms are omitted for clarity. Color code for the atoms as it is indicated as follow: carbon, nitrogen, oxygen and hydrogen atoms are shown as black, blue, red and light-pink, respectively.

Figure S3: Weigh loss for the deshydration of 1.

Figure S4: a) TGA and DSC (curve 1: original sample in the heating mode, curve 2: subsequent temperature cycle in the cooling mode) of compound **2**.

Figure S5: Temperature dependence of $\chi_m T$ in the temperature range between 2–400K on heating and cooling mode for **2** and the rehydrated sample (**2r**). Successive temperature cycles (on cooling and heating mode) have been omitted for simplicity, as they all go through the same place.

Figure S6: a) View of the $[Fe(bpp)_2]^{2+}$ layer in 1 down the y axis. Fe(1) is shown yellow and Fe(2) blue. Color code for the atoms as it is indicated in Figure S2. H atoms are omitted for clarity. B) Temperature dependence of $\chi_m T$ for compound 1 in the 2–400 K range.

Figure S7: View of the $[Fe(bpp)_2]^{2+}$ layer in 2 down the y axis. H atoms are omitted for clarity. Color code for the atoms as it is indicated in Figure **S2.** B) Temperature dependence of $\chi_m T$ for compound 2 in the 2–400 K range.

Figure S8: View of the $[Fe(bpp)_2]^{2+}$ layer in **4** down the *y* axis. H atoms are omitted for clarity. Color code for the atoms as it is indicated in Figure **S2**. B) Temperature dependence of $\chi_m T$ for compound **3** in the 2–400 K range.

Figure S9: Composition of the second coordination sphere of the HS and LS Fe^{2+} centers for **5**, **7** and **9**. The same color has been used for all the atoms for the same crystallographic anion for the sake of clarity.

Figure S10: Supramolecular synthon ($[Hchtc]_2^{4-}$) found in the crystal structure of **5**. Carbon, oxygen and hydrogen atoms are shown as black, red and pink, respectively.

Figure S11: View of the crystal structure of the hydrated salt $[Fe(bpp)_2]_2$ $[Cr(ox)_3]ClO_4 \cdot 5H_2O$ showing the first and second coordination spheres for the two crystallographic independent Fe²⁺ cations, Fe(1) (a) and Fe(2) (b). Carbon, oxygen and nitrogen atoms are shown as black, red and light-blue, respectively. H atoms are omitted for clarity.

Figure S12: View of the $[Fe(bpp)_2]^{2+}$ layer in **7**. H atoms are omitted for clarity. B) Temperature dependence of $\chi_m T$ for compound **7** in the 2–400 K range.

Figure S13: View of the $[Fe(bpp)_2]^{2+}$ layer in **8** down the *x* axis. H atoms are omitted for clarity. Color code for the atoms as it is indicated in Figure **S2**. B) Temperature dependence of $\chi_m T$ for compound **8** in the 2–400 K range.

Figure S14: View of the $[Fe(bpp)_2]^{2+}$ layer in **9** down the *x* axis. H atoms are omitted for clarity. Color code for the atoms as it is indicated in Figure **S2**. B) Temperature dependence of $\chi_m T$ for compound **9** in the 2–400 K range.

Figure S15: View of the $[Fe(bpp)_2]^{2+}$ layer in **9r** down the *x* axis. H atoms are omitted for clarity. Color code for the atoms as it is indicated in Figure **S4**. B) Temperature dependence of $\chi_m T$ for compound **9r** in the 2–400 K range.

Figure S16: View of the $[Fe(bpp)_2]^{2+}$ layer in **10** onto the *xy* plane. H atoms are omitted for clarity. Color code for the atoms as it is indicated in Figure **S2**. B) Temperature dependence of $\chi_m T$ for compound **10** in the 2–400 K range.

Figure S17: π - π stacking interactions between bpy ligands of neighboring $[Cr(bpy)(ox)_2]$ anions (3.583(2)–3.742(1) Å) for **8** are shown here in yellow.

Figure S18: π - π stacking interactions between bpy ligands of neighboring $[Cr(bpy)(ox)_2]^-$ anions (3.270(4) Å) and between a bpy ligand and a bpp ligand (3.317(5)–3.341(5) Å) for **6** are shown here in yellow and light-orange, respectively.

Figure S19: Aryl–aryl interactions between $[Fe(bpp)_2]^{2+}$ complexes (3.204(3) Å) within a 2D layer for **8** are shown here in yellow.