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Fig. S1 Structure of molecular square 1 with nonhydrogen atoms labelled; symmetry related atoms are 

designated with a ‘. 
 

 
 

Fig. S2 Structure of molecular square 4 with nonhydrogen atoms labelled; symmetry related atoms are 

designated with a ‘. 
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Fig. S3 View of bifurcated intramolecular hydrogen bonding between coordinated water molecule and the 

carboxylate oxygen atom in 1 forming two six membered rings R1
1(6).  

 

 
 

Fig. S4 View of bifurcated intramolecular hydrogen bonding between coordinated water molecule and the 

carboxylate oxygen atom in 4 forming two six membered rings R1
1(6). 
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(a) 

 

(b) 

 
Fig. S5 Packing diagram of the molecular squares in 1 (a) and 5 (b), viewing along the a-axis. All 

hydrogen atoms are omitted for clarity. 
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Fig. S6 Structure of molecular square 5 with nonhydrogen atoms labelled; symmetry related atoms are 

designated with a ‘. 
 

 

 

 

 
 

Fig. S7 Structure of molecular square 9 with nonhydrogen atoms labelled; symmetry related atoms are 

designated with a ‘. 
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Fig. S8 Structure of molecular square 10 with nonhydrogen atoms labelled; symmetry related atoms are 

designated with a ‘. 
 

 

  

 

 
 

Fig. S9 View of bifurcated intramolecular hydrogen bonding between coordinated water molecule and the 

carboxylate oxygen atom in 5 forming two six membered rings R1
1(6). 
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Fig. S10 View of bifurcated intramolecular hydrogen bonding between coordinated water molecule and 

the carboxylate oxygen atom in 9 forming two six membered rings R1
1(6). 

 

 

 

 
 

Fig. S11 View of bifurcated intramolecular hydrogen bonding between coordinated water molecule and 

the carboxylate oxygen atom in 10 forming two six membered rings R1
1(6). 
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Fig. S12 FTIR spectra of the ligands H2L1, H2L2. 

 

 
 

Fig. S13 FTIR spectra of the molecular squares 1-4. 
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Fig. S14 FTIR spectra of the molecular squares 5-10. 
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Fig. S15 PXRD patterns of the as-synthesized molecular squares 1 (a), 4 (b), 5 (c), 9 (d) and 10 (e) 

compared to the corresponding simulated powder patterns obtained from single crystal structures. 
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  (a) 

(b)  

              
Fig. S16 Powder X-ray diffraction patterns of the as synthesized samples of (a) 1-4 and (b) 5-10 

compared to the simulated powder patterns obtained from the single crystal structures of 1 and 5, 

respectively. 
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Fig. S17 PXRD pattern of 1-6 after socking in different solvents compared with their as synthesized 

powder pattern. 
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Fig. S18 PXRD pattern of 7-10 after socking in different solvents compared with their as synthesized 

powder pattern. 

 

  
 

Fig. S19 TGA scans for 1-4 (left) and 5-10 (right). 
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Fig. S20 Example of integration in the 1H NMR spectrum for the determination of conversion in 

Knoevenagel condensation reaction of benzaldehyde with malononitrile (Table 1, entry 1) 

 

Calculation of the product yield in the Knoevenagel condensation reaction of benzaldehyde with 

malononitrile catalyzed by 1 

 

Total amount of compounds at the end (see Fig. S20): 

Unreacted bezaldehyde (10.05 ppm) + 2‐benzylidenemalononitrile (7.81 ppm) = 0.07 + 1.00 = 1.07 

Yield of 2‐benzylidenemalononitrile = (1/1.07) * 100 = 93.45 %. 

 

 
Fig. S21 Plot of % conversion versus catalyst amount (left) and time (right) for the Knoevenagel 

condensation reaction of benzaldehyde and malononitrile catalysed by 1 and 5. 
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Fig. S22 % Conversion for the Knoevenagel condensation reaction of benzaldehyde and malononitrile 

catalysed by 1-10. 

 

 

 
Fig. S23 1H NMR spectrum of 2-(4-fluorobenzylidene)malononitrile. 
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Fig. S24 13C NMR spectrum of 2-(4-fluorobenzylidene)malononitrile. 

 
Fig. S25 1H NMR spectrum of 2-(4-chlorobenzylidene)malononitrile. 
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Fig. S26 13C NMR spectrum of 2-(4-chlorobenzylidene)malononitrile. 

 
Fig. S27 1H NMR spectrum of 2-(4-bromobenzylidene)malononitrile. 
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Fig. S28 13C NMR spectrum of 2-(4-bromobenzylidene)malononitrile. 

 
Fig. S29 1H NMR spectrum of 2-(4-methylbenzylidene)malononitrile. 
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Fig. S30 13C NMR spectrum of 2-(4-methylbenzylidene)malononitrile. 

 
Fig. S31 1H NMR spectrum of 2-(4-methoxybenzylidene)malononitrile. 
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Fig. S32 13C NMR spectrum of 2-(4-methoxybenzylidene)malononitrile. 

 
Fig. S33 1H NMR spectrum of 2-(4-nitrobenzylidene)malononitrile. 
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Fig. S34 13C NMR spectrum of 2-(4-nitrobenzylidene)malononitrile. 

 
Fig. S35 1H NMR spectrum of 2-(3-chlorobenzylidene)malononitrile. 
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Fig. S36 13C NMR spectrum of 2-(3-chlorobenzylidene)malononitrile. 

 
Fig. S37 1H NMR spectrum of 2-(3-bromobenzylidene)malononitrile. 
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Fig. S38 13C NMR spectrum of 2-(3-bromobenzylidene)malononitrile. 

 

 
Fig. S39 1H NMR spectrum of 2-(3-methoxybenzylidene)malononitrile. 
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Fig. S40 13C NMR spectrum of 2-(3-methoxybenzylidene)malononitrile. 

 

 
Fig. S41 1H NMR spectrum of 2-(3-nitrobenzylidene)malononitrile. 
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Fig. S42 13C NMR spectrum of 2-(3-nitrobenzylidene)malononitrile. 

 

 
Fig. S43 1H NMR spectrum of 2-(pyridin-4-ylmethylene)malononitrile. 
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Fig. S44 13C NMR spectrum of 2-(pyridin-4-ylmethylene)malononitrile. 

 
Fig. S45 1H NMR spectrum of 2-(pyridin-3-ylmethylene)malononitrile. 
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Fig. S46 13C NMR spectrum of 2-(pyridin-3-ylmethylene)malononitrile. 

 

 

 
Fig. S47 1H NMR spectrum of 2-(furan-2-ylmethylene)malononitrile. 
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Fig. S48 13C NMR spectrum of 2-(furan-2-ylmethylene)malononitrile. 

 

 
Fig. S49 1H NMR spectrum of 2-(thiophen-2-ylmethylene)malononitrile. 
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Fig. S50 13C NMR spectrum of 2-(thiophen-2-ylmethylene)malononitrile. 

 

 

 

 
 

Fig. S51 Conversion for three consecutive cycles of Knoevenagel condensation reaction of benzaldehyde 

and malononitrile catalysed by 1 and 5. 
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Fig. S52 FTIR spectra (top) and PXRD pattern (bottom) of 1 and 5 taken before and after catalysis 

experiments. 
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Fig. S53 Progress of the reaction with time in presence of catalysts 1 and 5 (solid lines) and after 

separating the catalyst from the reaction mixture (dotted lines). 



S32 
 

 

 

 

 

  
 

 

Fig. S54 Absorption spectra of 1-4 and H2L1 (left) and 5-10 and H2L2 (right) 

 

 

 

 

 

  
 

 

Fig. S55 Emission spectra of 4 (left) and 10 (right) compared with the free ligands H2L1 and H2L2 

respectively. 
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Fig. S56 Emission spectra of 4 (top) and 10 (bottom) in different solvents. 
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Fig. S57 Stern-Volmer (SV) plot for NB of 4 (left) and 10 (right). The relative fluorescence intensities are 

linear with NB concentration in the range of 0 – 0.035 mM, I0/I = 1 + 84.026[NB] (R2 = 0.998) for 4 and 

I0/I = 1 + 95.032[NB] (R2 = 0.992) for 10. 

 

 

 
Fig. S58 Change in emission spectra of 4 dispersed in an aqueous medium upon incremental addition of 

(a) 1,3-DNB solution (2 mM), (b) 1,4-DNB solution (2 mM) and (c) 2,4,6-TNT solution (2 mM). 
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Fig. S59 Change in emission spectra of 10 dispersed in an aqueous medium upon incremental addition of 

(a) 1,3-DNB solution (2 mM), (b) 1,4-DNB solution (2 mM) and (c) 2,4,6-TNT solution (2 mM). 
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Fig. S60 Stern-Volmer (SV) plot for 1,3-DNB of 4 (left) and 10 (right). The relative fluorescence 

intensities are linear with 1,3-DNB concentration in the range of 0 – 0.035 mM, I0/I = 1 + 11.029[1,3-

DNB] (R2 = 0.998) for 4 and I0/I = 1 + 8.110[1,3-DNB] (R2 = 0.999) for 10. 

 

 

 
 

 

Fig. S61 Stern-Volmer (SV) plot for 1,4-DNB of 4 (left) and 10 (right). The relative fluorescence 

intensities are linear with 1,3-DNB concentration in the range of 0 – 0.035 mM, I0/I = 1 + 9.268[1,4-

DNB] (R2 = 0.999) for 4 and I0/I = 1 + 8.563[1,4-DNB] (R2 = 0.999) for 10. 
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Fig. S62 Stern-Volmer (SV) plot for 2,4,6-TNT of 4 (left) and 10 (right). The relative fluorescence 

intensities are linear with 2,4,6-TNT concentration in the range of 0 – 0.035 mM, I0/I = 1 + 18.624[2,4,6-

TNT] (R2 = 0.999) for 4 and I0/I = 1 + 11.641[2,4,6-TNT] (R2 = 0.999) for 10. 

 

 

 

 

 
Fig. S63 A comparison of 3D Stern-Volmer plots of different nitro analytes (left) for 4 and (right) for 10. 
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  (a) 

 

 (b) 

 
Fig. S64 PXRD patterns of (a) 4 and (b) 10 recorded before and after the sensing experiments for 

different nitroanalytes. 
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Table S1 Selected bond lengths (Å) and bond angles (degree) in 1, 4, 5, 9 and 10. 

 

1 

Mn1-O5 2.2371(12)           Mn1-N2 2.4091(13) 

Mn1-O4’ 2.1354(12)  Mn1-O1 2.1395(12) 

Mn1-N1 2.2809(14)  Mn1-N3 2.2647(14) 

O5-Mn1-N2 155.35(5)  O5-Mn1-N1 86.62(5) 

O5-Mn1-N3 92.18(5)  O4’-Mn1-O5 94.73(5) 

O4’-Mn1-O1 89.92(5)  O4’-Mn1-N2 100.04(5) 

O4’-Mn1-N1 89.71(5)  O4’-Mn1-N3 173.03(5) 

O1-Mn1-O5 90.40(5)  O1-Mn1-N2 109.12(5) 

O1-Mn1-N3 89.11(5)  O1-Mn1-N1 176.95(5) 

N3-Mn1-N2 73.79(5)  N1-Mn1-N2 73.92(5) 

N3-Mn1-N1 91.61(5) 

Symmetry codes: 

(#1) 'x, y, z',           (#2) '-x, -y, -z'  

 

4 

Cd1-O1 2.121(2)  Cd1-O3 2.117(2) 

Cd1-N1 2.314(3)  Cd1-O4 2.236(2) 

Cd1-N3 2.219(3)  Cd1-N2 2.209(3) 

O1-Cd1-O4 90.52(9)  O1-Cd1-N1 110.30(10) 

O1-Cd1-N2 88.91(10)  O1-Cd1-N3 177.31(10) 

O3-Cd1-O1 89.13(10)  O3-Cd1-O4 96.60(9) 

O3-Cd1-N1 101.13(9)  O3-Cd1-N2 172.06(10) 

O3-Cd1-N3 90.52(10)  O4-Cd1-N1 152.62(9) 

N2-Cd1-O4 91.11(9)  N2-Cd1-N1 72.39(9) 

N2-Cd1-N3 91.80(10)  N3-Cd1-O4 86.86(10) 

N3-Cd1-N1 72.39(10) 

Symmetry codes: 

(#1) 'x, y, z',           (#2) '-x, -y, -z'  

 

5 

Mn1-O1 2.1178(16)  Mn1-O4’ 2.1293(16) 

Mn1-O6 2.2262(16)  Mn1-N1 2.268(2) 

Mn1-N2 2.3927(19)  Mn1-N3 2.2398(19) 

O1-Mn1-O4’ 88.27(7)  O1-Mn1-N1 86.84(7) 

O1-Mn1-O6 91.33(6)  O1-Mn1-N2 98.75(6) 

O1-Mn1-N3 172.13(6)  O4’-Mn1-O6 89.72(6) 

O41-Mn1-N1 174.78(7)  O4’-Mn1-N2 109.86(7) 

O41-Mn1-N3 89.52(7)  O6-Mn1-N1 88.56(7) 

O6-Mn1-N2 158.10(6)  O6-Mn1-N3 96.22(6) 

N1-Mn1-N2 72.75(7)  N3-Mn1-N1 95.57(7) 

N3-Mn1-N2 74.92(7) 

Symmetry codes: 

(#1) 'x, y, z',           (#2) '-x, -y, -z'  
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Table S1 (Continued) 

 

9 

Zn1-O1 2.155(2)  Zn1-O2 2.060(2) 

Zn1-O5 2.076(2)  Zn1-N1 2.128(3) 

Zn1-N2 2.334(3)  Zn1-N3 2.183(3) 

O1-Zn1-N2 160.80(9)  O5-Zn1-O1 91.41(10) 

O1-Zn1-N3 88.50(11)  O5-Zn1-N1 89.77(11) 

O5-Zn1-N2 106.27(10)  O5-Zn1-N3 173.08(10) 

O2-Zn1-O1 93.78(10)  O2-Zn1-O5 86.53(11) 

O2-Zn1-N1 170.47(10)  O2-Zn1-N2 94.82(9) 

O2-Zn1-N3 86.58(11)  N1-Zn1-O1 95.08(11) 

N1-Zn1-N2 77.79(10)  N1-Zn1-N3 97.14(11) 

N3-Zn1-N2 74.93(10) 

Symmetry codes: 

(#1) 'x, y, z',           (#2) '-x, -y, -z'  

 

10 

Cd1-O1 2.235(2)  Cd1-O6 2.364(2) 

Cd1-O4’ 2.238(2)  Cd1-N1 2.348(2) 

Cd1-N2 2.473(2)  Cd1-N3 2.327(2) 

O1-Cd1-O41 87.20(10)  O1-Cd1-N1 174.15(9) 

O1-Cd1-O6 89.55(8)  O1-Cd1-N2 109.99(8) 

O1-Cd1-N3 90.10(10)  O4’-Cd1-O6 89.99(8) 

O4’-Cd1-N1 86.97(9)  O4’-Cd1-N2 100.06(8) 

O4’-Cd1-N3 171.38(9)  O6-Cd1-N2 158.28(8) 

N1-Cd1-O6 89.96(8)  N1-Cd1-N2 71.58(8) 

N3-Cd1-O6 98.18(8)  N3-Cd1-N1 95.75(9) 

N3-Cd1-N2 73.20(8) 

Symmetry codes: 

(#1) 'x, y, z',           (#2) '-x, -y, -z'  
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Table S2 Hydrogen bonding parameters in 1, 4, 5, 9 and 10. 

 

D-H-A   d(D-H)/Å d(H-A)/Å d(D-A)/Å D-H-A/° 

1 

O5-H5A-O3’  0.89  1.89  2.6308(17) 140.0 

O5-H5B-O2  0.89  1.90  2.6616(18) 143.7 

 

D-H-A   d(D-H)/Å d(H-A)/Å d(D-A)/Å D-H-A/° 

4 

O4-H4A-O5  0.87  1.81  2.484(3) 135.8 

O4-H4B-O2  0.85  1.79  2.512(3) 141.8 

 

5  

O6-H6A-O3’  0.88  1.94  2.702(2) 143.9 

O6-H6B-O2  0.88  1.91  2.681(2) 145.8 

 

9 

O1-H1A-O4  0.89  1.80  2.675(4) 170.5 

O1-H1B-O3’  0.84  1.84  2.661(4) 165.5 

 

10 

O6-H6A-O3’  0.88  1.94  2.696(3) 143.2 

O6-H6B-O2  0.88  1.99  2.726(3) 140.7 
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Table S3 Approximate size of the nitro-analytes. 

 

Nitro-analytes Approximate size 

(L X W) Å 

Number of 

Nitro Groups 

Nitrobenzene (NB) 

 

8.5 X 6.4 

1 

1,4-dinitrobenzene (1,4-DNB) 

 

9.7 X 6.4 

2 

1,3-dinitrobenzene (1,3-DNB) 

 

9.3 X 7.4 

2 

2,4,6-trinitrotoluene (TNT) 

 

9.8 X 7.7 

3 

 


