Tannic Acid Mediated Synthesis of Dual-heteroatom Doped Hollow Carbon from Metal-Organic Framework for Efficient Oxygen Reduction Reaction

Mengchen Wua, Congling Lia, Jing Zhaoa, Yun Lingb and Rui Liua*

a Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, School of Materials Science and Engineering, and Institute for Advanced Study, Tongji University, Shanghai, 201804, China,

b Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai, 200433, China

Corresponding author E-mail: ruiliu@tongji.edu.cn

\textbf{Equation S1}: \(\frac{1}{j} = \frac{1}{j_k} + \frac{1}{B \omega^{0.5}} \)

\textbf{Equation S2}: \(B = 0.62nFC(D)^{2/3}v^{-1/6} \)

where \(j \) is the measured current density, \(j_k \) is the kinetic-limiting current density, \(B \) is the Levich slope, \(\omega \) is the rotation speed, \(n \) is the overall number of electrons transferred in the ORR, \(F \) is Faraday's constant, \(C \) is the bulk concentration of \(O_2 \) in the electrolyte, \(D \) is the diffusion coefficient of \(O_2 \), and \(v \) is the kinematic viscosity of the electrolyte.
Fig. S1 (a) FTIR spectra of ZIF-8, ZIF-8@TA and ZIF-8@TA-BDDA. (b) Schematic illustration on synthetic interaction between boron acid and polyols in TRIS buffer.

Fig. S2 EDS spectrum of NB-HC.
Fig. S3 High-resolution XPS of N1s of (a) N-C and (b) N-HC.

Fig. S4 Cyclic voltammograms for ORR in O$_2$ or N$_2$ saturated 0.1 M KOH at a scan rate of 10 mV s$^{-1}$ of (a) N-C, (b) N-HC, and (c) NB-HC electrode. (d) LSV of NB-HC before and after 10000 cycles at a scan rate of 100 mV s$^{-1}$.
g-N-B

*O

*OH

*O₂

*H
Fig. S5 Calculation model and optimized structures for the stable adsorbed intermediate products on the N/B-codoped nanocarbon.

Fig. S6 The corresponding band structure and partial density states.