Supporting Information for

Compositional and Structural Insights into the Nature of the H-Cluster Precursor on HydF

Anna G. Scott, Robert K. Szilagyi, David W. Mulder, Michael W. Ratzloff, Amanda S. Byer, Paul W. King, William E. Broderick, Eric M. Shepard, Joan B. Broderick

Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717 Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA

Table of Contents

1. Fourier-Transform Infrared Spectroscopic Results

Figure S1.1: Low temperature (13 K) FTIR spectra of HydF^{EG}......1

2. Electron Paramagnetic Spectroscopic Results

Figure S2.1: X-band EPR spectra of as-purified HydF ^{EG} at 25 K and 500 μ W
microwave power
Figure S2.2: X-band EPR spectra of dithionite reduced HydF ^{EG} at 15 K and 500
μW microwave power
Table S2.1: EPR spectroscopic properties of the [2Fe-2S] ⁺ and [4Fe-4S] ⁺ clusters
associated with HydF ^{EG} and HydF ^{ΔEG}

3. Computational Modeling and Structure Refinement

Figure S3.1: The experimental structure of [4Fe-4S] cluster and its inner sphere
protein environment taken from the 2.8 Å resolution structure (PDB ID 5KH0) of
HydF from <i>Thermosipho melanesiensis</i> (Ref. ¹)
Figure S3.2: The excised [4Fe-4S] cluster with inner-sphere ligands including peptide bonds from adjacent amino acids justified by the presence of H-bonding and peptide dipoles with the [4Fe-4S] cluster
Figure S3.3: Ionic fragment decomposition (A) and spin coupling schemes (B) considered.
Figure S3.4: Structural changes as a function of refinement steps for the [4Fe-4S] cluster model from Figure S3.2 calculated at ω B97X-D/SVP level and illustrated here for the 'abab' coupling (Figure S3.3B)

4. Calculated Vibrational Spectra for [2Fe] Precursors

Figure S4.2: Graphical illustration of structural and energetic differences for coordination isomers of $[Fe_2(DTMA)(CO)_4(CN)_2]^2$ - complex at $\omega B97X$ -D/def2TZVP level using X-ray structure YOBSEN (apical/apical isomer), Ref² and WOLROE (apical/basal isomer), Ref⁴.....8 Figure S4.3: Comparison of optimized structure and diatomic stretching frequencies without a force field correction for crystallographically characterized isomers of [Fe2(dithiolate)(CO)5-6(CN)1-0]1-/0 complexes at ω B97X-D/def2TZVP level using X-ray structure CAZMAR (Ref. ⁵), and ODEDUW (Ref. ⁶)......9 Table S4.1: Comparison of geometric structure, relative energies, and diatomic stretching frequencies without a force field correction for coordination isomers of $[Fe_2(DTMA)(CO)_4(CN)_2]^{2-}$ complex at $\omega B97X-D/def2TZVP$ level using X-ray structure YOBSEN (apical/apical isomer), Ref² and WOLROE (apical/basal isomer), Ref⁴......8 Table S4.2: Compilation of optimized structures and diatomic stretching frequencies calculated at generalized graduate approximation (GGA, pure and hybrid), metaGGA, double-hybrid (DH) density functional and wave function (Ψ)

5. Development of Scaled Quantum Chemical Force Fields

6. Geometric, Energetic, and Vibrational Analyses of Model A

7. Geometric, Energetic, and Vibrational Analyses of Model B

8. Geometric, Energetic, and Vibrational Analyses of Model C

Figure S8.1: Optimized structures (A-E, at ω B97X-D/def2TZVP level) for $[Fe^{(I)}Fe^{(I)}]^2$ - **Model C-Glu/Asp**, loss of CO from **Model A**, $[2Fe]_F$ cluster model binding *via* a bridging glutamate/aspartate ligand to a 'unique Fe site' (modeled by $[Fe^{3+}(SH)_3]$) and (F) calculated intramolecular distances and scaled diatomic stretching frequencies in comparison to the experimental HydF^{EG} bands. 16–18

9. Geometric, Energetic, and Vibrational Analyses of Model D

Figure S9.3: Optimized structures (at ω B97X-D/def2TZVP level) for oxidized [Fe^(II)Fe^(II)] (A) and reduced [Fe^(I)Fe^(II)]⁻ (B-D) **Model D-Glu/Asp+DTMA** (fused structure of TABGEJ and YOBSEN complexes), [2Fe]_F cluster model binding *via* a protein derived glutamate/aspartate ligand and (F) calculated intramolecular distances and scaled diatomic stretching frequencies in comparison to the experimental HydF^{EG} bands. 21

10. Geometric, Energetic, and Vibrational Analyses of Model E

11. Geometric, Energetic, and Vibrational Analyses of Model F

Figure S11.3: Optimized structures (at ω B97X-D/SVP level) for oxidized, vicinal, *cis* (Cys)₂[2Fe-2S]×[Fe⁽¹⁾Fe⁽¹⁾]²⁻ (A-B) **Model F**, [2Fe]_F cluster model binding *via* a bridging cyanide ligand in two arrangements from HydA without any constraints on atomic positions. A water molecule completes the distal Fe coordination environment of the [2Fe-2S] cluster. Atomic spin density contour plots at 0.003 *e*⁻ Å⁻³ contour level (C-D). Calculated intramolecular distances and scaled diatomic stretching frequencies (E) in comparison to the experimental HydF^{EG} bands......26

Figure S11.4: Optimized structures (at ω B97X-D/SVP level) for reduced vicinal, *cis* (Cys)₂[2Fe-2S]⁻×[Fe^(I)Fe^(I)]²⁻ (A-B) **Model F**, [2Fe]_F cluster model binding *via* a bridging cyanide ligand in two arrangements from HydA without any constraints on atomic positions. A water molecule completes the distal Fe coordination environment of the [2Fe-2S] cluster. Atomic spin density contour plots at 0.003 *e*⁻ Å⁻³ contour level (C-D). Calculated intramolecular distances and scaled diatomic stretching frequencies (E) in comparison to the experimental HydF^{EG} bands.....27

Figure S11.6: Optimized structures (at ω B97X-D/SVP level) for reduced geminal $(Cys)_2[2Fe-2S]^{-}\times[Fe^{(I)}Fe^{(I)}]^{2-}$ (A-B) **Model F**, $[2Fe]_F$ cluster model binding *via* a bridging cyanide ligand in two arrangements from HydA without any constraints on atomic positions. A water molecule completes the distal Fe coordination environment of the [2Fe-2S] cluster. Atomic spin density contour plots at 0.003 *e*⁻ Å⁻³ contour level (C-D). Calculated intramolecular distances and scaled diatomic stretching frequencies (E) in comparison to the experimental HydF^{EG} bands......29

12. Geometric, Energetic, and Vibrational Analyses of Model G

Figure S12.3: Partially optimized *in proteo* structures (at ω B97X-D/SVP level) with constrained backbone atomic positions as in holo-HydA structure (3C8Y) and in the presence of three neutralizing methylammonium counter-ions for [4Fe-4S]²⁺×[Fe⁽¹⁾Fe⁽¹⁾]²⁻ (A-B) **Model G**, [2Fe]_F cluster model binding *via* a bridging cyanide ligand to an oxidized [4Fe-4S] cluster, (C-D) atomic spin density distribution plots (at 0.003 e⁻/Å³ contour level), and (E) calculated intramolecular distances and scaled diatomic stretching frequencies in comparison to the experimental HydF^{EG} bands.

Figure S12.4: Partially optimized *in proteo* structures (at ω B97X-D/SVP level) with constrained backbone atomic positions as in holo-HydA structure (3C8Y) for $[4Fe-4S]^{1+}\times[Fe^{(II)}Fe^{(I)}]^-$ in open shell singlet (A) and spin-polarized triplet (B) states of **Model G**, oxidized $[2Fe]_F$ cluster model binding *via* a bridging cyanide ligand to a reduced [4Fe-4S] cluster, (C-D) atomic spin density distribution plots (at 0.003 e⁻/Å³ contour level), and (E) calculated intramolecular distances and scaled diatomic stretching frequencies in comparison to the experimental HydF^{EG} bands. 35

Figure S12.5: Partially optimized *in proteo* structures (at ω B97X-D/SVP level) with constrained backbone atomic positions as in holo-HydA structure (3C8Y) for $[4Fe-4S]^{2+}\times[Fe^{(II)}Fe^{(I)}]^-$ in spin-polarized doublet state (A-B) of **Model G**, oxidized $[2Fe]_F$ cluster model binding *via* a bridging cyanide ligand to an oxidized [4Fe-4S] cluster, (C-D) atomic spin density distribution plots (at 0.003 e⁻/Å³ contour level), and (E) calculated intramolecular distances and scaled diatomic stretching frequencies in comparison to the experimental HydF^{EG} bands.

Figure S12.7: Partially optimized *in proteo* structures (at ω B97X-D/SVP level) with constrained backbone atomic positions as in holo-HydA structure (3C8Y) and in the presence of three neutralizing methylammonium counter-ions for [4Fe-4S]¹⁺×[Fe^(I)Fe^(I)]²⁻ (A-B) **Model G**, reduced [2Fe]_F cluster model binding *via* a bridging cyanide ligand to a reduced [4Fe-4S] cluster, (C-D) atomic spin density distribution plots (at 0.003 e⁻/Å³ contour level), and (E) calculated intramolecular distances and scaled diatomic stretching frequencies in comparison to the experimental HydF^{EG} bands.

1. Fourier-Transform Infrared Spectroscopic Results

Figure S1.1: Low temperature (13 K) FTIR spectra of HydF^{EG}. A. As-purified HydF^{EG} (top panel, 1.8 mM protein with 2.10 ± 0.42 Fe/dimer) and in the presence of 10 mM DT (bottom panel, 1.6 mM protein with 2.10 ± 0.42 Fe/dimer). B. A distinct protein preparation of as-purified HydF^{EG} (2.3 mM protein, undetermined Fe number) and DT treated protein(2.1 mM protein, undetermined Fe number, with 10 mM NaDT). C. Top panel shows the spectrum from the cell free lysate (CFL) of a distinct HydF^{EG} expression. The remaining spectra refer to the purified HydF^{EG} protein from this CFL in either as-purified, CO-treated, H₂-treated, or auto-oxidized states (2.1 mM protein, undetermined Fe number). D. Spectra refer to as-purified (without DT treatment) HydF^{EG}, CO-treated, and H₂-treated enzyme (2.3 mM protein, undetermined Fe number). Also shown is the spectrum for as-purified HydF^{EG} following addition of 10 mM dithiothreitol (DTT, 2.1 mM protein, undetermined Fe number).

2. Electron Paramagnetic Spectroscopic Results

Figure S2.1: X-band EPR spectra of as-purified HydF^{EG} at 25 K. A. HydF^{EG} (335 μ M protein with 3.22 \pm 0.26 Fe/dimer) from a protein preparation that yielded FTIR observable bands. **B**. HydF^{EG} (310 μ M protein with 4.36 \pm 0.42 Fe/dimer) from a protein preparation that did not yield FTIR observable bands. In both panels A and **B**, the black spectrum corresponds to the experimental data, while the red line is the simulation. All simulations of experimental data were carried out using the EasySpin software platform ¹¹ and generated the reported g-values presented in the text and supporting information (Table S2.1). In both panels A and B, the experimental signals are simulated as a mixture of two distinct [2Fe-2S]⁺ clusters; the details of these component signals are defined in Table S2.1. C. Direct overlay of the experimental spectra depicted in panels A (red spectrum) and B (black spectrum). We observe similar [4Fe-4S] clusters in HydF^{∆EG} and HydF^{EG} (Fig. S2.2). However the [2Fe-2S] clusters we observe in HydF^{EG} are similar but not identical to those we observe in HydF^{ΔEG} (Table S2.1). At this time, while we do not currently understand the origin of these subtle differences, we presume that the structural flexibility of the conserved cysteine motif site influences the small gvalue shifts associated with the [2Fe-2S]⁺ cluster signals; we have no reason to suspect that the EPR differences shown above are a result of [2Fe]_F loading.¹

Figure S2.2: X-band EPR spectra of dithionite reduced HydF at 15 K. A. Direct overlay of experimental spectra for HydF^{EG} and HydF^{ΔEG}. Black spectrum represents 72 μ M HydF^{ΔEG} with 2.54 ± 0.04 Fe/dimer treated with 5 mM DT. Blue spectrum represents HydF^{EG} (335 μ M protein with 3.22 ± 0.26 Fe/dimer treated with 2 mM DT) from a protein preparation that yielded FTIR observable bands. Red spectrum represents HydF^{EG} (310 μ M protein with 4.36 ± 0.42 Fe/dimer treated with 2 mM DT) from a protein preparation that did not yield FTIR observable bands. Red spectrum represents HydF^{EG} (310 μ M protein with 4.36 ± 0.42 Fe/dimer treated with 2 mM DT) from a protein preparation that did not yield FTIR observable bands. Panels **B**, **C**, and **D**, show simulations (red lines) of the experimental data (black lines) depicted in panel **A**. All simulations of experimental data were carried out using the EasySpin software platform ¹¹ and generated the reported g-values presented in the text and supporting information (Table S2.1). Panel **B** is the simulation for the HydF^{EG} from a protein preparation that yielded FTIR observable bands. Panel **C** is the simulation for the HydF^{EG} from a protein preparation that yielded FTIR observable bands. Panel **C** is the simulation for the HydF^{EG} from a protein preparation that yielded FTIR observable bands. Panel **C** is the simulation for the HydF^{EG} from a protein preparation that yielded FTIR observable bands. Panel **C** is the simulation for the HydF^{EG} from a protein preparation that yielded FTIR observable bands. Panel **C** is the simulation for the HydF^{EG} from a protein preparation that yielded FTIR observable bands. Panel **C** is the simulation for the HydF^{EG} from a protein preparation that yielded FTIR observable bands. Panel **D** is the simulation for HydF^{ΔEG}.

Table S2.1. EPR spectroscopic properties of the $[2Fe-2S]^+$ and $[4Fe-4S]^+$ clusters associated with HydF^{EG} and HydF^{ΔEG}. Values obtained via simulation with EasySpin as described in the main body. The $[2Fe-2S]^+$ cluster g-values for HydF^{ΔEG} were previously reported by us¹² and are included here again for convenience.

Enzyme	Cluster	Temperature	g 1	g1- strain	g ₂	g2- strain	g 3	g3- strain
As-isolated HvdF ^{∆EG}	[2Fe-2S] ⁺ - #1	30 K	2.010	0.011	2.003	0.012	1.961	0.018
5	[2Fe-2S] ⁺ - #2		2.045	0.015	2.008	0.017	1.981	0.024
DT Reduced $HydF^{\Delta EG}$	[4Fe-4S] ⁺	15 K	2.053	0.032	1.879	0.033	1.865	0.068
As-isolated HydF ^{EG} (I)	[2Fe-2S] ⁺ - #1	25 K	2.016	0.010	2.004	0.008	1.961	0.028
	[2Fe-2S] ⁺ - #2		2.041	0.016	2.008	0.008	1.997	0.015
DT Reduced HydF ^{EG} (I)	[4Fe-4S] ⁺	15 K	2.054	0.032	1.879	0.032	1.864	0.071
As-isolated HydF ^{EG} (II)	[2Fe-2S] ⁺ - #1	25 K	2.011	0.012	2.001	0.011	1.960	0.021
	[2Fe-2S] ⁺ - #2		2.042	0.014	1.992	0.010	1.981	0.028
DT Reduced HydF ^{EG} (II)	[4Fe-4S] ⁺	15 K	2.052	0.033	1.878	0.032	1.863	0.071
(I). Spectral a Spectral and	nalysis of pro alysis of prote	otein from a prep ein from a prepa	aration ration th	that yield at did not	ed FTIR t vield F	observat	ole band rvable b	s. (II). ands.

3. Computational Modeling and Structure Refinement

Figure S3.1: The experimental structure of [4Fe-4S] cluster and its inner sphere protein environment taken form the 2.8 Å resolution structure (5KH0) of HydF from *Thermosipho melanesiensis* (Ref. 1).

Figure S3.2: The excised [4Fe-4S] cluster with inner-sphere ligands including peptide bonds from adjacent amino acids justified by the presence of H-bonding and peptide dipoles with the [4Fe-4S] cluster.

Figure S3.3: Ionic fragment decomposition (A) and spin coupling schemes (B) considered.

Table S3.1: Energy changes (ΔE^{SCF} in kJ mol⁻¹) as a function of refinement steps of the [4Fe-4S] cluster model from Figure S3.2 calculated at ω B97X-D/SVP level.

optimized moiety	$\Delta E^{SCF}(aabb)$	$\Delta E^{SCF}(abab)$	$\Delta E^{SCF}(abba)$
none, X-ray structure	+1077	+1073	+1070
$[Fe_4S_4S_3]$, in vacuo	+1030	+1029	+1023
inner sphere, ^a in vacuo	+798	+796	+793
unconstrained, in vacuo	+26	0 b	+27
inner sphere, ^a in proteo	+186	+183	+185
unconstrained, in proteo	-401	-394	-406

^a [Fe₄S₄(SCH₂)₃(OOCH₂CH₂)]; ^b -10048.0742874 a.u.

in proteo solvated, optimized $SCH_2/OOCCH_2$ ligands (fixed backbone)

in proteo solvated, fully optimized structure

Figure S3.4: Structural changes as a function of refinement steps for the [4Fe-4S] cluster model from Figure S3.2 calculated at ω B97X-D/SVP level and illustrated here for the 'abab' coupling (Figure S3.3B).

4. Calculated Vibrational Spectra for [2Fe] Synthons

Figure S4.1: Comparison of the performance of ωB97X-D functional using def2TZVP all-electron basis set (A) for Rauchfuss (YOBSEN with DTMA ligand, Ref. ²) and Pickett (no XRD structure with PDT ligand, Ref. ³) without employing scaled quantum chemical force field correction and (B) assignment of diatomic stretching vibrational modes calculated at the same level.

- **Figure S4.2:** Graphical illustration of structural and energetic differences for coordination isomers of $[Fe_2(DTMA)(CO)_4(CN)_2]^{2-}$ complex at ω B97X-D/def2TZVP level using X-ray structure YOBSEN (apical/apical isomer), Ref² and WOLROE (apical/basal isomer), Ref⁴.
- **Table S4.1:** Comparison of geometric structure, relative energies, and diatomic stretching frequencies without a force field correction for coordination isomers of $[Fe_2(DTMA)(CO)_4(CN)_2]^{2-}$ complex at $\omega B97X$ -D/def2TZVP level using X-ray structure YOBSEN (apical/apical isomer), Ref ² and WOLROE (apical/basal isomer), Ref ⁴.

				anti	syn bas/ap	i	cis	trans			
	YOBSEN	WOLROE	api/api	bas/api	to YOBSEN to W	OLROE	bas/bas	bas/bas			
Distances, Å											
Fe-CN	1.94	1.94	1.94-1.95	1.95	1.94		1.94-1.95	1.94-1.95			
FeC=N	1.15	1.14	1.16	1.16	1.16		1.16	1.16			
Fe-CO	1.74-1.76	1.71/1.77	1.76	1.75-1.77	1.76-1.77		1.75-1.77	1.75-1.78			
FeC=O	1.15-1.16	1.16/1.19	1.15	1.15	1.15		1.15	1.15-1.16			
Fe-S	2.28-2.29	2.27	2.29-2.30	2.27-2.32	2.28-2.30		2.26-2.31	2.28-2.29			
FeFe	2.51	2.52	2.51	2.52	2.52		2.56	2.53			
SS	3.10	3.09	3.13	3.12	0.23		3.11	3.11			
S-C	1.86	1.82-1.83	1.82	1.82	1.82		1.82-1.83	1.82-1.83			
rms distance		0.03	0.03	0.03	0.03	0.03	0.02	0.02			
max. dev.		0.06	0.06	0.06	0.06	0.10	0.06	0.07			
min. dev.		-0.07	-0.08	-0.08	-0.08	-0.09	-0.07	-0.07			
sum of dev.		-0.07	0.06	0.05	0.05	0.13	0.05	0.04			
rms XYZ w/o NH		0.23	0.09	0.18	0.26	0.15	0.31	0.33			
	SCF en	ergies, a.u.	-4081.11	-4081.10	-4081.10		-4081.09	-4081.10			
re	lative energ	gies, kJ/mol	0	14	8		37	26			
Stretching, cm ⁻¹	Pickett	in KBr							average	st. dev ra	inae
g/as.+v/as. CO	1871	1867	2003	1992	1990		1986	1992	1993	6	۲ 17
g/s.+v/as. CO	1883	1880	2017	2014	2009		1998	1999	2007	9	19
g/as.+v/s. CO	1921	1917	2027	2040	2036		2015	2044	2032	12	29
s. CO	1963	1951	2089	2089	2087		2082	2090	2087	3	8
as. CN	2075	2029	2218	2218	2216		2232	2226	2222	7	16
s. CN		2078	2220	2225	2227		2235	2229	2227	5	15
CO avg.	1910	1904	2034	2034	2031		2020	2031	2030		
shift			125	124	121	127	111	122	120		
CN avg.	2075	2054	2219	2222	2222		2234	2228	2225		
shift			144	147	147	168	159	153	150		

- **Figure S4.3:** Comparison of optimized structure and diatomic stretching frequencies without a force field correction for crystallographically characterized isomers of [Fe₂(dithiolate)(CO)₅₋₆(CN)₁₋₀]^{1-/0} complexes at ωB97X-D/def2TZVP level using X-ray structure CAZMAR (Ref. ⁵), and ODEDUW (Ref. ⁶).
- Table S4.2: Compilation of optimized structures and diatomic stretching frequencies calculated at generalized graduate approximation (GGA, pure and hybrid),

			GGA				metaGGA			DH ¥	
	YOBSEN	BP86	B(5HF)P86	B3LYP	B(50HF)LYP	TPSS	ωB97xD	M06x	B2PLYPD3	MP2	HF
Distances, Å											
Fe-CN	1.94	1.92-1.93	1.92	1.95	1.90	1.93	1.95	2.01	1.90-1.91	1.75-1.76	2.11-2.12
FeC=N	1.15	1.18	1.18	1.17	1.15	1.18	1.16	1.16	1.18	1.20	1.14
Fe-CO	1.74-1.76	1.75	1.74-1.75	1.76	1.75	1.75	1.76	1.83-1.84	1.69-1.70	1.57-1.58	2.06-2.07
FeC=O	1.15-1.16	1.17-1.18	1.17	1.16	1.13	1.17	1.15	1.14	1.18	1.20	1.12
Fe-S	2.28-2.29	2.30-2.31	2.29-2.30	2.33-2.34	2.27-2.28	2.29-2.30	2.29-2.31	2.40-2.41	2.26	2.14-2.15	2.53-2.55
FeFe	2.51	2.60	2.57	2.57	2.45	2.57	2.51	2.52	2.55	2.46	2.69
SS	3.10	3.11	3.11	3.16	3.11	3.11	3.13	3.30	3.06	2.90	3.44
S-C	1.86	1.88	1.86	1.86	1.81	1.87	1.84	1.84	1.86	1.85	1.84
rms distance		0.03	0.03	0.05	0.04	0.03	0.02	0.15	0.06	0.22	0.39
max. abs. dev.		0.10	0.08	0.20	0.02	0.06	0.07	0.49	0.08	0.18	1.28
min. abs. dev.		-0.03	-0.04	0.00	-0.10	-0.02	-0.05	-0.06	-0.20	-0.69	-0.17
sum of dev.		0.31	0.22	0.41	-0.32	0.25	0.10	1.10	-0.22	-1.62	2.93
rms XYZ w/o NH		0.20	0.18	0.12	0.09	0.16	0.08	0.14	0.27	0.44	0.29
(DTMA))Stretching,	, 1/cm									
1916	(PDT)										
1921	1871	1863	1892	1945	2098	1873	2001	2011	1890	1780	2184
1953	1883	1879	1908	1965	2106	1891	2015	2035	1907	1800	2221
1984	1921	1899	1927	1965	2131	1908	2024	2064	1980	1912	2244
1987	1963	1940	1968	2026	2188	1952	2086	2124	1994	1991	2330
2037	2075	2064	2086	2171	2310	2086	2215	2243	2112	2018	2414
2042	2075	2071	2093	2177	2314	2092	2220	2244	2115	2271	2415
CO avg.	1910	1895	1924	1975	2131	1906	2032	2059	1943	1871	2245
shift		-14	14	66	221	-4	122	149	33	-39	335
CN avg.	2075	2068	2090	2174	2312	2089	2218	2244	2114	2145	2415
shift		-8	15	99	237	14	143	169	39	70	340

metaGGA, double-hybrid (DH) density functional and wave function (Ψ) level using def2TZVP basis set.

5. Development of Scaled Quantum Chemical Force Fields

Scaling/shifting factors from literature										
BP86/TZVP:	$v(adj.) = v (calc.) - 2 cm^{-1}$	$R^2 = 0.970$	Ref. 7							
	v(adj.) = 0.999 v (calc.)	$R^2 = 0.970$								
	$v(adj.) = 0.955 v (calc.) + 88 cm^{-1}$	$R^2 = 0.972$								
B3LYP/DZP:	v(adj.) = 0.9538 v (calc.)	$R^2 = 0.9477$	Ref. 8-9							

Scalin	g/shi	ifting	factors	of the	given	study
			/	17		

Figure S5.1: Summary of scaled quantum chemical force fields from literature (Refs. 7-9) and our work.

Figure S5.2:. Dependence of scaling and shifting factors developed for scaled quantum chemical force fields as a function of presence of implicit (A), both explicit counter ion and implicit solvent environment (B) and using a smaller yet reliable basis set (C) for electronic structure calculation of the [4Fe-4S] cluster models.

6. Geometric, Energetic, and Vibrational Analyses of Model A

Figure S6.1: Optimized structure (A, at ω B97X-D/def2TZVP level) for $[Fe^{(I)}Fe^{(I)}]^{2-}$ **Model A**, non-specific binding at an arbitrary protein binding pocket and (B) calculated intramolecular distances and scaled diatomic stretching frequencies in comparison to the experimental HydF^{EG} bands.

7. Geometric, Energetic, and Vibrational Analyses of Models B

Figure S7.1: Optimized structures (A-C, at ω B97X-D/def2TZVP level) for $[Fe^{(I)}Fe^{(I)}]^2$ - **Model B-Cys**, loss of CO from **Model A** and $[2Fe]_F$ cluster model binding *via* a protein derived cysteine ligand and (D) calculated intramolecular distances and scaled diatomic stretching frequencies in comparison to the experimental HydF^{EG} bands.

Figure S7.2: Optimized structures (A-C, at ωB97X-D/def2TZVP level) for [Fe⁽¹⁾Fe⁽¹⁾]²⁻**Model B-Glu/Asp**, loss of CO from **Model A** and [2Fe]_F cluster model binding *via* a protein derived glutamate/aspartate ligand and (D) calculated intramolecular distances and scaled diatomic stretching frequencies in comparison to the experimental HydF^{EG} bands.

Α В basal- 1,3-bridging basal- 1,1-bridging (+100 kJ/mol) (+41 kJ/mol) 2.3 apical – 1,3-bridging (+105 kJ/mol) Π 2.33 1.16 1.96 2.3 1.87 1.76 1.15 4.98 27 76 2.30 Н 1.25 2.48 1 15 75 Ĥ 1.9 apical – 1,1-bridging (+108 kJ/mol) Н Ε 2.04 Н 2.33

8. Geometric, Energetic, and Vibrational Analyses of Models C

basal-1,1-bridging

(as	s purified)	basal	basa	l	apical	apica	al	apica	al
	State 2	1,1 bridging	1,3 brido	ging	1,1 bridging	1,1 brid	ging	1,3 brid	ging
Distances, Å									
Fe-CN		1.97, 1.96	1.96-1.	.98	2.01, 1.96	1.97, 2	.00	1.95, 1	.97
FeC=N		1.16	1.16-1.	.17	1.16	1.16	i	1.16, 1	.17
Fe-CO		1.75, 1.76	1.76-1.	.75	1.75-1.76	1.81, 1	.77	1.74, 1	.75
FeC=O		1.16, 1.15	1.15-1.	.16	1.15-1.16	1.14, 1	.15	1.16	6
Fe-S		2.27-2.30, 2.32	2.27-2.	.33	2.31-2.34, 2.33-2.3	5 2.34-2.36, 2	.31-2.35	2.31/2.33, 2	.33/2.35
FeFe		2.48	2.57		2.52	2.87		2.51	
SS		3.13	3.12		3.24	3.12		3.17	,
S-C		1.84, 1.87	1.84		1.84	1.85	;	1.84	Ļ
Fau		-6672 51	-6672	51	-6672 55	-6672	53	-6672	51
		100	-0072.51		-0072.00	-0072.	55	-0072.	51
ΔE, KJ ΠΟΙ		100	100		0	41		105	
Stretching, cm ⁻¹									
	1877	dissociated	1951	1838	dissociated	2025	1904	1948	1835
	1909		1962	1848		2077	1950	1986	1869
(1940)	1946		2037	1914		2135	2002	2038	1915
	1968								
(2049)	2044		2188	2049		2207	2066	2191	2051
	2070		2200	2059		2229	2085	2213	2071
CO avo.	1925		1983	1867		2135	1952	2075	1873
shift			58	-58		210	27	150	-52
CN avo.	2057		2194	2054		2218	2075	2202	2061
shift			137	-3		161	18	145	4

Figure S8.1 continued.

-7 shift Figure S8.2: Optimized structures (at $\omega B97X$ -D/def2TZVP level) for reduced [Fe^(I)Fe^(I)]²⁻ (A-B) and oxidized [Fe^(I)Fe^(II)]⁻ (C-D) Model C-His, loss of CO from Model A, [2Fe]_F cluster model binding *via* a bridging histidine ligand to a 'unique Fe site' (modeled by [Fe³⁺(SH)₃]) and (E) calculated intramolecular distances and scaled diatomic stretching frequencies in comparison to the experimental HydF^{EG} bands.

CN avg.

9. Geometric, Energetic, and Vibrational Analyses of Models D

Figure S9.2: Optimized structures (at ω B97X-D/def2TZVP level) for oxidized [Fe^(II)Fe^(II)] (A: X-ray B: calculated) and reduced [Fe^(I)Fe^(II)]⁻ (C) **Model D-Glu/Asp**, [2Fe]_F cluster model binding *via* a protein derived glutamate/aspartate ligand and (D) calculated intramolecular distances and scaled diatomic stretching frequencies (in comparison to the experimental HydF^{EG} and TABGEJ (Ref. ¹⁰) bands

(as j	ourified) State 2	bridg Ee(II)Ee	ing Glu, brid	lging dtma	2(11)	basal (Fe(l)Fe		trans basal CNs		bident. trans CNs		
Distances Å		1 0(1)1 0	2(11)	1 C(1)1 C	2(II)	10(1)10	2(11)	10(1)10	(II)	10(1)10	2(11)	
Fe-CN		1 93		2.06. 1.94		1 95/1 94		1 95		1 96		
FeC=N		1 16		1 16		1 16		1.35		1 16	1.50	
Fe-CO		1.10		1 76 1	, 80	1 78/1 82	1.10		83/1 75	1 76/1 9/ 1 76/1 70		
FeC=0		1.01		1.70, 1.00		1 15 1	14	1 15 1 14	L1 15	1 15 1	14	
Fe S		2 36-2	37	2 /1 2			2 37/2 //	2 38	2 30 2 36			
Fo Fo		2.30-2.	51	2.41, 2	.00	2.00/2.00, 2	.07-2.00	2.01/2.44	, 2.00	2.00, 2.00	1	
rere		3.40		3.27		3.20		3.27		3.90		
33		2.97		3.00)	3.06		3.00		3.52		
5-0		1.87		1.80)	1.85		1.05		1.82-1.	.85	
E, a.u.		-4325.	-4325.71		68	-4325.	68	-4325.	67	-4325.	66	
ΔE, eV				0.9		1.0		1.3		1.5		
Stretching, cm ⁻¹												
	1877	2140	2006	1992	1874	1969	1854	1983	1866	1999	1881	
	1909	2144	2010	2056	1931	2042	1919	2051	1927	2065	1939	
(1940)	1946	2172	2035	2116	1985	2115	1984	2058	1933	2083	1955	
	1968	2184	2045	2155	2019	2155	2019	2135	2002	2136	2002	
(2049)	2044	2247	2101	2211	2069	2224	2081	2224	2081	2232	2088	
	2070	2256	2109	2231	2087	2230	2086	2256	2109	2249	2103	
CO avo.	1925	2160	2024	2080	1952	2070	1944	2057	1932	2071	1944	
shift		235	99	155	27	145	19	132	7	146	19	
CN ava.	2057	2252	2105	2221	2078	2227	2083	2240	2095	2241	2095	
shift		195	48	164	21	170	26	183	38	184	38	

Figure S9.3: Optimized structures (at ω B97X-D/def2TZVP level) for oxidized [Fe^(II)Fe^(II)] (A) and reduced [Fe^(II)Fe^(II)]⁻ (B-D) **Model D-Glu/Asp+DTMA** (fused structure of TABGEJ and YOBSEN complexes), [2Fe]_F cluster model binding *via* a protein derived glutamate/aspartate ligand and (F) calculated intramolecular distances and scaled diatomic stretching frequencies in comparison to the experimental HydF^{EG} bands.

10. Geometric, Energetic, and Vibrational Analyses of Models E

Figure S10.1: Optimized structures (at ω B97X-D/def2TZVP level) for oxidized $[Fe^{3+}]\times[Fe^{(I)}Fe^{(I)}]^{2-}$ (A-D) **Model E**, $[2Fe]_F$ cluster model binding *via* a bridging cyanide ligand to a 'unique Fe site' (modeled by $[Fe^{3+}(SH)_3]$) and (E) calculated intramolecular distances and scaled diatomic stretching frequencies in comparison to the experimental HydF^{EG} bands.

Figure S10.2: Optimized structures (at ω B97X-D/def2TZVP level) for reduced [Fe²⁺]×[Fe^(I)Fe^(I)]²⁻ (A-B) **Model E**, [2Fe]_F cluster model binding *via* a bridging cyanide ligand to a 'unique Fe site' (modeled by [Fe²⁺(SH)₃]⁻) and (C) calculated intramolecular distances and scaled diatomic stretching frequencies in comparison to the experimental HydF^{EG} bands and the one-electron oxidized form.

11. Geometric, Energetic, and Vibrational Analyses of Models F

		cyanide ni			NITTIE Model F2 - geminal, cis w/ 2EA			& CPC
(as	purified)	resting	g	resting	g	I		
	State 2	ox. 2Fe-2S,	2Fe(I)	ox. 2Fe-2S,	2Fe(I)	1		
Distances, Å						• I		
Fe-CN	(κ;μ)	1.90; 1.	87	1.91; 1.	94	1		
FeC=N	(κ;μ)	1.17		1.17; 1.	16	1		
Fe-CO		1.75-1.	77	1.76-1.	77	1		
FeC=O		1.16-1.	15	1.15		1		
Fe-S		2.33; 2.	31	2.32-2.	33	1		
FeFe		2.45		2.44		1		
SS		3.18		3.19		1		
S-C		1.83		1.83		l		
E, a.u.		-9316.79	180	-9316.78	305	l		
∆E, kJ mol⁻¹		648		721		1		
				23		1		
stepwise red pot, mV						l		
Stretching, cm ⁻¹						l		
-	1877	2023	1881	2066	1925	1		
	1909	2071	1931	2071	1931	1		
(1940)	1946	2079	1939	2080	1940	1		
	1 96 8	2128	1990	2147	2009	1		
(2049)	2044	2184	2048	2221	2086	1		
	2070	2221	2087	2296	2165	l		
CO avg.	1925	2118	1935	2147	1951	1		
shift		193	10	222	26	1		
CN avg.	2057	2203	2067	2259	2125	1		
shift		146	10	202	68	1		

Figure S11.1: Optimized structures (at ω B97X-D/SVP level) for oxidized, vicinal, *cis* (Cys)₂[2Fe-2S]×[Fe^(I)Fe^(I)]²⁻ (A-B) **Model F**, [2Fe]_F cluster model binding *via* a bridging cyanide ligand in two arrangements from HydA with frozen backbone atoms. A water molecule completes the distal Fe coordination environment of the [2Fe-2S] cluster. Atomic spin density contour plots at 0.003 *e*⁻ Å⁻³ contour level (C-D). Calculated intramolecular distances and scaled diatomic stretching frequencies (E) in comparison to the experimental HydF^{EG} bands.

_		cyanic	le	nitrile		
(as	(as purified)			resting		
	State 2	ox. 2Fe-2S,	2Fe(I)	ox. 2Fe-2S, 2Fe(I)		
Distances, Å	Distances, Å					
Fe-CN	(κ;μ)	1.90; 1.8	87	1.91; 1.94		
FeC=N	(κ;μ)	1.17		1.17; 1.16		
Fe-CO		1.75-1.7	77	1.76-1.77		
FeC=O		1.16-1.1	15	1.15		
Fe-S		2.33; 2.3	31	2.32-2.	33	
FeFe		2.45		2.44		
SS		3.18		3.19		
S-C		1.83		1.83		
E, a.u.	E, a.u.		180	-9316.78	305	
ΔE , kJ mol ⁻¹		648		721		
stepwise red pot, mV				23		
Stretching, cm ⁻¹						
	1877	2023	1881	2066	1925	
	1909	2071	1931	2071	1931	
(1940)	1946	2079	1939	2080	1940	
	1968	2128	1990	2147	2009	
(2049)	2044	2184	2048	2221	2086	
	2070	2221	2087	2296	2165	
CO avg.	1925	2118	1935	2147	1951	
shift		193	10	222	26	
CN avg.	2057	2203	2067	2259	2125	
shift		146	10	202	68	

Figure S11.2: Optimized structures (at ω B97X-D/SVP level) for reduced vicinal, *cis* (Cys)₂[2Fe-2S]⁻×[Fe^(I)Fe^(I)]²⁻ (A-B) **Model F**, [2Fe]_F cluster model binding *via* a bridging cyanide ligand in two arrangements from HydA with frozen backbone atoms. A water molecule completes the distal Fe coordination environment of the [2Fe-2S] cluster. Atomic spin density contour plots at 0.003 *e*⁻Å⁻³ contour level (C-D). Calculated intramolecular distances and scaled diatomic stretching frequencies (E) in comparison to the experimental HydF^{EG} bands.

					nitrile		
(as	(as purified)		resting		resting		
	State 2			ox. 2Fe-2S, 2Fe(I)			
Distances, Å	Distances, Å						
Fe-NC	Fe-NC (κ;μ)		1.90; 1.87		1.91; 1.94		
FeN=C	FeN=C $(\kappa;\mu)$		1.17; 1.18		1.17; 1.16		
Fe-CO		1.77		1.76-1.77			
FeC=O		1.15		1.15			
Fe-S		2.33; 2.31		2.32-2.34			
FeFe	FeFe		2.46		2.44		
SS	SS		3.16		3.20		
S-C		1.83-1.84		1.84			
E, a.u.	E, a.u.		-9316.82035		-9316.80219		
ΔE , kJ mol ⁻¹	ΔE , kJ mol ⁻¹		676		671		
train energy, kJ mol ⁻¹		75		50			
relative to F1				48			
stepwise red pot, mV	e red pot, mV		-9316.8				
1st 0.1 Å kick E, a.u.				0.0	-9316.8		
Stretching, cm ⁻¹							
	1877	2072	1931	2065	1925		
	1909	2080	1940	2072	1932		
(1940)	1946	2082	1942	2077	1937		
	1968	2132	1994	2146	2009		
(2049)	2044	2184	2048	2222	2088		
	2070	2221	2087	2299	2167		
CO avg.	1925	2129	1952	2147	1951		
shift		204	27	222	26		
CN avg.	2057	2203	2067	2260	2127		
shift	146	10	203	70			

Figure S11.3: Optimized structures (at ωB97X-D/SVP level) for oxidized, vicinal, *cis* (Cys)₂[2Fe-2S]×[Fe^(I)Fe^(I)]²⁻ (A-B) **Model F**, [2Fe]_F cluster model binding *via* a bridging cyanide ligand in two arrangements from HydA without any constraints on atomic positions. A water molecule completes the distal Fe coordination environment of the [2Fe-2S] cluster. Atomic spin density contour plots at 0.003 *e*⁻ Å⁻³ contour level (C-D). Calculated intramolecular distances and scaled diatomic stretching frequencies (E) in comparison to the experimental HydF^{EG} bands.

		cya	cyanide		nitrile	
(as	(as purified) State 2		reduced		reduced	
	State 2	red. 2Fe-2	2S, 2Fe(I)	red. 2Fe-2	2S, 2Fe(I)	
Distances, Å						
Fe-NC	(κ;μ)	1.91;	1,89	1.93;	1.98	
FeN=C	(κ;μ)	1.17		1.17; 1.16		
Fe-CO		1.76-	1.77	1.77		
FeC=O		1.1	15	1.15		
Fe-S	Fe-S			2.33-2.34		
FeFe		2.48		2.54		
SS	SS		17	3.21		
S-C		1.8	1.83		1.83-1.84	
E, a.u.	E, a.u.		-9316.94053		-9316.94734	
∆E, kJ mol⁻¹	ΔE , kJ mol ⁻¹		360		884	
train energy, kJ mol ⁻¹	energy, kJ mol ⁻¹		19		159	
relative to F1	relative to F1		116	-18		
stepwise red pot, mV		0.0	-9316.9		48	
1st 0.1 Å kick E, a.u.				0.3	-9316.9	
Stretching, cm ⁻¹						
-	1877	2067	1926	2058	1917	
	1909	2075	1935	2064	1924	
(1940)	1946	2076	1936	2087	1948	
	1968	2136	1998	2138	2001	
(2049)	2044	2210	2075	2215	2080	
	2070	2239	2105	2296	2164	
CO avo.	1925	2134	1949	2143	1947	
shift		209	24	218	22	
CN avg.	2057	2224	2090	2255	2122	
shift		167	33	108	65	

Figure S11.4: Optimized structures (at ω B97X-D/SVP level) for reduced vicinal, *cis* (Cys)₂[2Fe-2S]⁻×[Fe⁽¹⁾Fe⁽¹⁾]²⁻ (A-B) **Model F**, [2Fe]_F cluster model binding *via* a bridging cyanide ligand in two arrangements from HydA without any constraints on atomic positions. A water molecule completes the distal Fe coordination environment of the [2Fe-2S] cluster. Atomic spin density contour plots at 0.003 *e*⁻ Å⁻³ contour level (C-D). Calculated intramolecular distances and scaled diatomic stretching frequencies (E) in comparison to the experimental HydF^{EG} bands.

Figure S11.5: Optimized structures (at ω B97X-D/SVP level) for oxidized, geminal (Cys)₂[2Fe-2S]×[Fe^(I)Fe^(I)]²⁻ (A-B) **Model F**, [2Fe]_F cluster model binding *via* a bridging cyanide ligand in two arrangements from HydA without any constraints on atomic positions. Atomic spin density contour plots at 0.003 e^- Å⁻³ contour level (C-D). Calculated intramolecular distances and scaled diatomic stretching frequencies (E) in comparison to the experimental HydF^{EG} bands.

Figure S11.6: Optimized structures (at ω B97X-D/SVP level) for reduced geminal (Cys)₂[2Fe-2S]⁻×[Fe^(I)Fe^(I)]²⁻ (A-B) **Model F**, [2Fe]_F cluster model binding *via* a bridging cyanide ligand in two arrangements from HydA without any constraints on atomic positions. A water molecule completes the distal Fe coordination environment of the [2Fe-2S] cluster. Atomic spin density contour plots at 0.003 *e*⁻ Å⁻³ contour level (C-D). Calculated intramolecular distances and scaled diatomic stretching frequencies (E) in comparison to the experimental HydF^{EG} bands.

	cyan	cyanide nitrile					
(as	purified)	rest	ing	resti	ng		
State 2		ox. 2Fe-2	ox. 2Fe-2S, 2Fe(I)		ox. 2Fe-2S, 2Fe(I)		
Distances, Å							
Fe-NC	(κ;μ)	1.91;	1.88	1.90;	1.94		
FeN=C	(κ;μ)	1.1	7	1.17; 1.16			
Fe-CO		1.77		1.76-1.77			
FeC=O		1.1	1.15		1.15		
Fe-S	Fe-S FeFe		2.32; 2.31		2.32-2.34		
FeFe		2.4	2.46		2.44		
SS		3.1	8	3.20			
S-C		1.8	33	1.83			
E, a.u.		-10151.	14558	-10151.12061			
ΔE , kJ mol ⁻¹	ΔE , kJ mol ⁻¹		665		707		
train energy, kJ mol-1							
relative to F1				66			
stepwise red pot, mV		-2.5	-10151.1				
1st 0.1 Å kick E, a.u.				-0.2	-10151.1		
Stretching, cm ⁻¹							
	1877	2048	1907	2061	1920		
	1909	2071	1931	2064	1923		
(1940)	1946	2079	1939	2077	1937		
	1968	2129	1991	2142	2005		
(2049)	2044	2192	2056	2222	2087		
	2070	2245	2112	2302	2171		
CO avg.	1925	2127	1942	2145	1946		
shift		202	17	220	21		
CN avg.	2057	2219	2084	2262	2129		
shift	shift		27	205	72		

Figure S11.7: Optimized structures (at ω B97X-D/SVP level) for oxidized, (Cys)₃[2Fe-2S]⁻×[Fe^(I)Fe^(I)]²⁻ (A-B) **Model F**, [2Fe]_F cluster model binding *via* a bridging cyanide ligand in two arrangements from HydA without any constraints on atomic positions. Atomic spin density contour plots at 0.003 *e*⁻ Å⁻³ contour level (C-D). Calculated intramolecular distances and scaled diatomic stretching frequencies (E) in comparison to the experimental HydF^{EG} bands.

Figure S11.8: Optimized structures (at ωB97X-D/SVP level) for reduced (Cys)₃[2Fe-2S]^{2–}×[Fe⁽¹⁾Fe⁽¹⁾]²⁻ (A-B) **Model F**, [2Fe]_F cluster model binding *via* a bridging cyanide ligand in two arrangements from HydA without any constraints on atomic positions. Atomic spin density contour plots at 0.003 *e*⁻ Å⁻³ contour level (C-D). Calculated intramolecular distances and scaled diatomic stretching frequencies (E) in comparison to the experimental HydF^{EG} bands.

12. Geometric, Energetic, and Vibrational Analyses of Models G

basal, cyanide coordination (+6 kJ mol⁻¹)

basal, nitrile coordination (+49 kJ mol⁻¹)

F	(as purified) State 2		basal cyanide		basal nitrile		apical cyanide		apical nitrile		
	Distances, Å										
	Fe-CN		1.88, 1.93		1.96, 1.93		1.91		1.98		
	FeC=N		1.17		1.16, 1.17		1.17		1.17		
	Fe-CO		1.76-1.77		1.76-1.77		1.76		1.76		
	FeC=O		1.15-1.16		1.15-1.16		1.15		1.15		
	Fe-S		2.29-2.	32	2.30-2.33		2.32		2.35		
	FeFe		2.49		2.48		2.49		2.58		
	SS		3.15		3.17	3.17		3.17		3.21	
	S-C		1.85		1.85		1.84		1.84		
	E, a.u.		-13185.53		-13185	3185.51 -1318		3185.53 -1		-13185.53	
	ΔE , kJ mol ⁻¹		6		49		0		16		
	Stretching, cm ⁻¹										
		1877	2040	1895	1995	1856	2052	1906	2051	1905	
		1909	2066	1918	2079	1929	2064	1916	2072	1923	
	(1940)	1946	2097	1945	2092	1940	2075	1926	2083	1933	
		1968	2136	1979	2139	1981	2124	1968	2132	1975	
	(2049)	2044	2199	2034	2250	2078	2191	2027	2255	2082	
		2070	2253	2081	2303	2124	2254	2082	2302	2123	
	CO avg.	1925	2132	1934	2143	1927	2127	1929	2149	1934	
	shift		207	9	218	2	202	4	224	9	
	CN avg.	2057	2226	2057	2277	2101	2223	2054	2279	2103	
	shift		169	0	220	44	166	-3	222	46	

Figure S12.1: Fully optimized *in vacuo* structures (at ω B97X-D/SVP level) for [4Fe-4S]²⁺×[Fe⁽¹⁾Fe⁽¹⁾]²⁻ (A-D) **Model E**, [2Fe]_F cluster model binding *via* a bridging cyanide ligand to an oxidized [4Fe-4S] cluster and (E) calculated intramolecular distances and scaled diatomic stretching frequencies in comparison to the experimental HydF^{EG} bands.

Figure S12.2: Partially optimized *in vacuo* structures (at ω B97X-D/SVP level) with constrained backbone atomic positions as in holo-HydA structure (3C8Y) for [4Fe-4S]²⁺×[Fe^(I)Fe^(I)]²⁻ (A-B) **Model E**, [2Fe]_F cluster model binding *via* a bridging cyanide ligand to an oxidized [4Fe-4S] cluster, (C-D) atomic spin density distribution plots (at 0.003 e⁻/Å³ contour level), and (E) calculated intramolecular distances and scaled diatomic stretching frequencies in comparison to the experimental HydF^{EG} bands (relative energies are given to the lowest energy fully optimized structure).

Figure S12.3: Partially optimized *in proteo* structures (at ω B97X-D/SVP level) with constrained backbone atomic positions as in holo-HydA structure (3C8Y) and in the presence of three neutralizing methylammonium counter-ions for $[4Fe-4S]^{2+}\times[Fe^{(I)}Fe^{(I)}]^{2-}$ (A-B) **Model E**, $[2Fe]_F$ cluster model binding *via* a bridging cyanide ligand to an oxidized [4Fe-4S] cluster, (C-D) atomic spin density distribution plots (at 0.003 e⁻/Å³ contour level), and (E) calculated intramolecular distances and scaled diatomic stretching frequencies in comparison to the experimental HydF^{EG} bands.

Figure S12.4: Partially optimized *in proteo* structures (at ωB97X-D/SVP level) with constrained backbone atomic positions as in holo-HydA structure (3C8Y) for [4Fe-4S]¹⁺×[Fe^(II)Fe^(I)]⁻ in open shell singlet (A) and spin-polarized triplet (B) states of **Model E**, oxidized [2Fe]_F cluster model binding *via* a bridging cyanide ligand to a reduced [4Fe-4S] cluster, (C-D) atomic spin density distribution plots (at 0.003 e⁻/Å³ contour level), and (E) calculated intramolecular distances and scaled diatomic stretching frequencies in comparison to the experimental HydF^{EG} bands.

Figure S12.5: Partially optimized *in proteo* structures (at ω B97X-D/SVP level) with constrained backbone atomic positions as in holo-HydA structure (3C8Y) for [4Fe-4S]²⁺×[Fe^(II)Fe^(II)]⁻ in spin-polarized doublet state (A-B) of **Model E**, oxidized [2Fe]_F cluster model binding *via* a bridging cyanide ligand to an oxidized [4Fe-4S] cluster, (C-D) atomic spin density distribution plots (at 0.003 e⁻/Å³ contour level), and (E) calculated intramolecular distances and scaled diatomic stretching frequencies in comparison to the experimental HydF^{EG} bands.

Figure S12.6: Partially optimized *in proteo* structures (at ω B97X-D/SVP level) with constrained backbone atomic positions as in holo-HydA structure (3C8Y) for [4Fe-4S]¹⁺×[Fe^(I)Fe^(I)]²⁻ in spin-polarized doublet state (A-B) of **Model E**, reduced [2Fe]_F cluster model binding *via* a bridging cyanide ligand to an reduced [4Fe-4S] cluster, (C-D) atomic spin density distribution plots (at 0.003 e⁻/Å³ contour level), and (E) calculated intramolecular distances and scaled diatomic stretching frequencies in comparison to the experimental HydF^{EG} bands.

Figure S12.7: Partially optimized *in proteo* structures (at ω B97X-D/SVP level) with constrained backbone atomic positions as in holo-HydA structure (3C8Y) and in the presence of three neutralizing methylammonium counter-ions for [4Fe-4S]¹⁺×[Fe^(I)Fe^(I)]²⁻ (A-B) **Model E**, reduced [2Fe]_F cluster model binding *via* a bridging cyanide ligand to a reduced [4Fe-4S] cluster, (C-D) atomic spin density distribution plots (at 0.003 e⁻/Å³ contour level), and (E) calculated intramolecular distances and scaled diatomic stretching frequencies in comparison to the experimental HydF^{EG} bands.

Figure S12.8: Comparison of partially optimized *in proteo* models with constrained backbone atoms of **Model E** as derived from *Tme*HydF crystal structure with bridging apical cyanide coordination ($[4Fe-4S]^{2+}\times[Fe^{(I)}Fe^{(I)}]^{2-}$ open-shell singlet, spin polarized electronic state with total of 18 unpaired electrons, 'abab' spin coupling) calculated at ω B97X-D/SVP level.

References for supporting information

- 1. Caserta, G.; Pecqueur, L.; Adamska-Venkatesh, A.; Papini, C.; Roy, S.; Artero, V.; Atta, M.; Reijerse, E.; Lubitz, W.; Fontecave, M. *Nat. Chem. Biol.* **2017**, *13*, 779-784.
- 2. Li, H.; Rauchfuss, T. B. J. Am. Chem. Soc. 2002, 124, 726-727.
- Le Cloirec, A.; C. Davies, S.; J. Evans, D.; L. Hughes, D.; J. Pickett, C.; P. Best, S.; Borg, S. Chem. Comm. 1999, 2285-2286.
- 4. Schmidt, M.; Contakes, S. M.; Rauchfuss, T. B. J. Am. Chem. Soc. 1999, 121, 9736-9737.
- 5. Lyon, E. J.; Georgakaki, I. P.; Reibenspies, J. H.; Darensbourg, M. Y. *Angew. Chem. Int. Ed.* **1999**, *38*, 3178-3180.
- 6. Gloaguen, F.; Lawrence, J. D.; Schmidt, M.; Wilson, S. R.; Rauchfuss, T. B. J. Am . Chem. Soc. 2001, 123, 12518-12527.
- 7. Yu, L.; Greco, C.; Bruschi, M.; Ryde, U.; De Gioia, L.; Reiher, M. *Inorg. Chem.* **2011**, *50*, 3888-3900.
- 8. Tye, J. W.; Darensbourg, M. Y.; Hall, M. B. J. Comp. Chem. 2006, 27, 1454-1462.
- 9. Tye, J. W.; Darensbourg, M. Y.; Hall, M. B. Inorg. Chem. 2008, 47, 2380-2388.
- 10. Liaw, W.-F.; Tsai, W.-T.; Gau, H.-B.; Lee, C.-M.; Chou, S.-Y.; Chen, W.-Y.; Lee, G.-H. *Inorg. Chem.* **2003**, *42*, 2783-2788.
- 11. Stoll, S.; Schweiger, A. J. Magn. Res. 2006, 178, 42-55.
- 12. Shepard, E. M.; Byer, A. S.; Betz, J. N.; Peters, J. W.; Broderick, J. B. *Biochemistry* **2016**, *55*, 3514-3527.