Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2018

Supporting information for

Oxidatively Stable Ferrocenyl- π -bridge-Titanocene D- π -A Complexes: An Electrochemical and Spectroscopic Investigation of the Mixed-Valence States

Jared A. Pienkos,^a Alex B. Webster,^a Eric J. Piechota,^b A. Danai Agakidou,^a Colin D. McMillen,^c David Y. Pritchett,^a Gerald J. Meyer,^b and Paul S. Wagenknecht.*^a

^aDepartment of Chemistry, Furman University, Greenville, SC, 29613, USA. ^bDepartment of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA. ^cDepartment of Chemistry, Clemson University, Clemson, SC, 29634, USA.

Page

Details of the structure refinements		
Table S1: Crystallographic data for $Cp_2Ti(C_2Fc)_2$ and $Cp^*_2Ti(C_2Fc)_2$	S3	
Figure S1: Different orientations for $Cp_2Ti(C_2Fc)_2CuBr$ and $Cp*_2Ti(C_2Fc)_2CuBr$	S4	
Figure S2: Packing arrangement in Cp ₂ Ti(C ₂ Fc) ₂ CuBr	S5	
Figure S3: Packing arrangement in $Cp_2^Ti(C_2Fc)_2CuBr$	S5	
Figure S4: Cyclic Voltammograms of ^R Cp ₂ Ti(C ₂ Fc) ₂ Compounds	S6	
Figure S5: DPVs and Gaussian fits in CH ₂ Cl ₂ (0.1 M [<i>n</i> -Bu ₄ N][PF ₆])	S7	
Figure S6: CVs, DPVs and Gaussian fits in THF (0.1 M [<i>n</i> -Bu ₄ N][PF ₆])	S8	
Figure S7: CVs, DPVs and Gaussian fits in CH_2Cl_2 (0.1 M [<i>n</i> -Bu ₄ N] B(C ₆ F ₅) ₄))	S8	
Figure S8: Spectroelectrochemical data for Cp ₂ Ti(C ₂ Fc) ₂ CuBr	S9	
Figure S9 : Spectroelectrochemical data for $^{TMS}Cp_2Ti(C_2Fc)_2CuBr$	S9	
Figure S10: Spectroelectrochemical data for Cp ₂ Ti(C ₂ Fc) ₂ CuCl	S10	
Figure S11: Spectroelectrochemical reversibility for Cp* ₂ Ti(C ₂ Fc) ₂ CuBr	S10	
Figure S12: Gaussian fits of the spectra of the MV states	S11	
Figure S13: NIR spectra of ${}^{R}Cp_{2}Ti(C_{2}Fc)_{2}CuBr MV$ states in $CH_{2}Cl_{2}$	S12	
Table S2: $Cp_2Ti(C_2Fc)_2CuBr$ coordinates from $\oplus B97XD/Def2-TZV$.	S13	
Table S3: $Cp_2Ti(C_2Fc)_2CuBr^+$ coordinates from B3LYP/6-31G(d).	S15	
Figure S14: Electron Density from Spin SCF Density for $Cp_2Ti(C_2Fc)_2CuBr^+$	S16	
Figure S15: ¹ H- and ¹³ C-NMR spectra of $Cp_2Ti(C_2Ph)_2CuBr$	S17	
Figure S16: ¹ H- and ¹³ C-NMR spectra of $Cp_2Ti(C_2Fc)_2CuCl$	S18	
Figure S17: ¹ H- and ¹³ C-NMR spectra of $Cp_2Ti(C_2Fc)_2CuBr$	S19	
Figure S18 : ¹ H- and ¹³ C-NMR spectra of $Cp_2Ti(C_2Fc)_2Cul$	S20	
Figure S19 : ¹ H- and ¹³ C-NMR spectra of $Cp*_2Ti(C_2Fc)_2CuBr$	S21	
Figure S20: ¹ H- and ¹³ C-NMR spectra of ^{TMS} Cp ₂ Ti(C ₂ Fc)(C ₂ Ph)CuBr	S22	
Figure S21: ¹ H- and ¹³ C-NMR spectra of (Me ₂ CpC ₂ Fc) ₂ TiCl ₂	S23	
Figure S22: UV-Visible Spectrum of $Cp_2Ti(C_2Ph)_2CuBr$ in CH_2Cl_2	S24	
Figure S23: UV-Visible Spectrum of Cp ₂ Ti(C ₂ Fc) ₂ CuCl in CH ₂ Cl ₂	S24	

Figure S24: ા	UV-Visible Specturm of Cp ₂ Ti(C ₂ Fc) ₂ CuBr in CH ₂ Cl ₂	S25
Figure S25: Լ	UV-Visible Spectrum of Cp ₂ Ti(C ₂ Fc) ₂ CuI in CH ₂ Cl ₂	S25
Figure S26: Լ	UV-Visible Spectrum of Cp* ₂ Ti(C ₂ Fc) ₂ CuBr in CH ₂ Cl ₂	S26
Figure S27: Լ	UV-Visible Spectrum of TMS Cp ₂ Ti(C ₂ Fc)(C ₂ Ph)CuBr in CH ₂ Cl ₂	S26
Figure S28: 1	UV-Visible Spectrum of (Me ₂ CpC ₂ Fc) ₂ TiCl ₂ in CH ₂ Cl ₂	S27

X-ray Crystallography. Single crystals of $Cp_2Ti(C_2Fc)_2CuBr$ suitable for diffraction were grown as the toluene solvate, from diffusion of hexanes into a toluene solution treated with TEA (1 drop). Single crystals of $Cp_2^Ti(C_2Fc)_2CuBr$ suitable for diffraction were grown from diffusion of hexanes into a benzene solution treated with TEA (1 drop). The crystal structures were determined by single crystal X-ray diffraction measured using a Bruker D8 Venture diffractometer. Crystals were mounted on a low-scatter loop using paratone, and immediately cooled to 173 ± 2 K in a cold nitrogen gas stream. Data were collected by phi and omega scans using Mo K α (λ = 0.71073 Å) radiation from an Incoatec microfocus source, and measured by a Photon 100 detector. Data were processed and scaled (multi-scan absorption correction) using the SAINT and SADABS routines in the Apex3 software suite.¹ The space groups were determined based on the systematic absences, and the structures were solved by intrinsic phasing (SHELXT) and subsequently refined by Fourier difference techniques using full-matrix-least-squares on F^2 (SHELXL) using the SHELXTL package.² All non-hydrogen atoms were refined anisortropically. Hydrogen atoms attached to carbon atoms were placed in geometrically idealized positions and refined using appropriate riding models.

Details of the data collection and refinements are summarized in Table S1. In addition to the thermal ellipsoid plots in the manuscript, a comparison of the molecular geometries, as well as additional packing diagrams are included as Figures S1-S3 here in the Supporting Information.

	Cp ₂ Ti(C ₂ Fc) ₂ CuBr	Cp* ₂ Ti(C ₂ Fc) ₂ CuBr
CCDC reference no.	1852310	1852311
Formula	$C_{34}H_{28}BrCuFe_{2}Ti \cdot C_{7}H_{8}$	C ₄₄ H ₄₈ BrCuFe ₂ Ti
Formula weight (g/mol)	831.75	879.87
Temperature (K)	173(2)	173(2)
Wavelength (Å)	0.71073	0.71073
Crystal system, space group	monoclinic <i>, P</i> 2 ₁ /c	monoclinic, P2 ₁ /c
<i>a,</i> Å	7.6947(6)	13.9631(19)
<i>b,</i> Å	18.5105(11)	11.5467(13)
<i>c,</i> Å	23.9218(17)	23.644(3)
<i>β</i> , ⁰	98.907(3)	98.371(5)
<i>V,</i> Å ³	3366.2(4)	3771.5(8)
Z, D_{cal} g/cm ³	4, 1.641	4, 1.550
μ , mm ⁻¹	2.913	2.604
F(000)	1680	1800
Crystal size, mm	0.30 x 0.21 x 0.03	0.44 x 0.21 x 0.15
Theta range for data	2.36-26.00	2.38-27.00
Reflections collected	50253	115324
Independent reflections	6630	8224
Rint	0.0620	0.0527
Max. and min. transmission	1.0000, 0.7571	1.0000 <i>,</i> 0.6234
Data / restraints / param.	6630/0/416	8224 / 0 / 452
Goodness-of-fit on F ²	1.033	1.046
Final Rindians [1>2 m(1)]	R = 0.0311	R = 0.0342
	wR = 0.0670	wR = 0.0882
Rindicos (all data)	R = 0.0421	R = 0.0421
A multes (an uata)	wR = 0.0712	wR = 0.0929
Largest diff. peak/hole (e·Å ⁻³)	0.382/-0.665	0.664/-1.444

Table S1: Crystallographic data for $Cp_2Ti(C_2Fc)_2CuBr$ and $Cp^*_2Ti(C_2Fc)_2CuBr$

Figure S1: Comparison of three different orientations of $Cp_2Ti(C_2Fc)_2CuBr$ and $Cp^*_2Ti(C_2Fc)_2CuBr$.

Figure S2: Packing arrangement of $Cp_2Ti(C_2Fc)_2CuBr$ along [010] (left) and [100] (right) projections.

Figure S3: Packing arrangement in $Cp_2^Ti(C_2Fc)_2$ along [100] (left) and [010] (right) projections.

Figure S4: Cyclic voltammograms of Cp₂Ti(C₂Fc)₂, ^{TMS}Cp₂Ti(C₂Fc)₂, and Cp*₂Ti(C₂Fc)₂. Conditions: [Ti] ~ 1 mM in CH₂Cl₂ (0.1 M [*n*-Bu₄N][ClO₄]), glassy carbon working electrode, Ag⁺/Ag reference electrode, and scan rate = 100 mV/s. The x-axis reports voltage vs FcH as determined by recording a voltammogram of FcH before and after data collection. Voltage sweeps are initiated in the cathodic direction.

Figure S5: Differential Pulse voltammograms of $(Me_2CpC_2Fc)_2TiCl_2$, $Cp^*_2Ti(C_2Fc)_2CuBr$, ^{TMS}Cp₂Ti(C₂Fc)₂CuBr, Cp₂Ti(C₂Fc)₂CuBr, Cp2Ti(C₂Fc)₂CuCl, Cp2Ti(C₂Fc)₂CuI, and. Conditions: [Ti] ~ 1 mM in CH₂Cl₂ (0.1 M [*n*-Bu₄N][PF₆]), glassy carbon working electrode, Ag⁺/Ag reference electrode, step E = 4 mV, pulse width = 50 ms, pulse period = 200 ms, and pulse amplitude = 10 mV. The x-axis reports voltage vs FcH as determined by recording a voltammogram of FcH before and after data collection. Voltage sweeps are initiated in the anodic direction. Experimental data is in black, gaussian peaks are solid red, and the gaussian fits are the dashed red lines.

Figure S6: Differential Pulse Voltammograms and Cyclic Voltammograms of Cp2Ti(C_2Fc)₂CuBr, ^{TMS}Cp₂Ti(C_2Fc)₂CuBr, and Cp*₂Ti(C_2Fc)₂CuBr Conditions: [Ti] ~ 1 mM in THF (0.1 M [*n*-Bu₄N][PF₆]), glassy carbon working electrode, Ag⁺/Ag reference electrode. Cyclic Voltammetry scan rate = 100 mV/s. Differential Pulse Voltammetry step E = 4 mV, pulse width = 50 ms, pulse period = 200 ms, and pulse amplitude = 10 mV. The x-axis reports voltage vs FcH as determined by recording a voltammogram of FcH before and after data collection. Voltage sweeps are initiated in the anodic direction. Experimental data is in black, gaussian peaks are solid red, and the gaussian fits are the dashed red lines.

Figure S7: Differential Pulse Voltammograms and Cyclic Voltammograms of Cp2Ti(C₂Fc)₂CuBr, ^{TMS}Cp₂Ti(C₂Fc)₂CuBr, and Cp*₂Ti(C₂Fc)₂CuBr Conditions: [Ti] ~ 1 mM in CH₂Cl₂ (0.1 M [*n*-Bu₄N][B(C₆F₅)₄]), glassy carbon working electrode, Ag⁺/Ag reference electrode. Cyclic Voltammetry scan rate = 100 mV/s. Differential Pulse Voltammetry step E = 4 mV, pulse width = 50 ms, pulse period = 200 ms, and pulse amplitude = 10 mV. The x-axis reports voltage vs FcH as determined by recording a voltammogram of FcH before and after data collection. Voltage sweeps are initiated in the anodic direction. Experimental data is in black, gaussian peaks are solid red, and the gaussian fits are the dashed red lines.

Figure S8: Spectroelectrochemical data for $Cp_2Ti(C_2Fc)_2CuBr$. Fitted single wavelength data (inset).

Figure S9: Spectroelectrochemical data for $^{TMS}Cp_2Ti(C_2Fc)_2CuBr$. Fitted single wavelength data (inset).

Figure S10: Spectroelectrochemical data for $Cp_2Ti(C_2Fc)_2CuCl$. Fitted single wavelength data (inset).

Figure S11: Spectroelectrochemical data for $Cp_2^Ti(C_2Fc)_2CuBr$ for both the forward and return scan with some spectra removed for clarity. The starting spectrum is shown in purple, the spectrum at the most positive potential is shown in green, and the spectrum at the starting potential showing substantial reversibility is shown in red.

Figure S12: Gaussian fits of the spectra of the MV states for $Cp_2Ti(C_2Fc)_2CuBr$ (top left), $Cp_2Ti(C_2Fc)_2CuCl$ (top right), $Cp^*_2Ti(C_2Fc)_2CuBr$ (bottom left), and ^{TMS}Cp₂Ti(C₂Fc)₂CuBr (bottom right). Fits were performed with the x-axis in wavenumbers.

Figure S13: NIR spectra of $Cp_2^Ti(C_2Fc)_2CuBr$, $Cp_2Ti(C_2Fc)_2CuBr$, and ^{TMS} $Cp_2Ti(C_2Fc)_2CuBr$ in CH_2Cl_2 after the addition of 1 equivalent of $Cu(ClO_4)_2 \bullet 6H_2O$ (in CH_3CN). The highest energy NIR peaks are due to the MV species and were also observed in the spectroelectrochemical experiments. The higher amplitude noise at 1700 nm is due to the strong absorbance of CH_2Cl_2 at this wavelength. The smaller amplitude noise spikes coincide with CH_3CN absorbances.

Table S2: Coordinates for $Cp_2Ti(C_2Fc)_2CuBr$ obtained following optimization with the $\omega B97XD/Def2-TZV$ functional/basis.

Charge = 0 Multiplicity = 1

Cu -0.01438626 0.49622738 -0.93518228 Br 0.12074713 -1.33191229 -2.47204119 Ti -0.12417006 3.12907807 0.33490872 Fe -3.54376401 -1.86112837 0.35783330 Fe 3.65073644 -1.66088756 0.36751171 C -1.56601100 1.73013294 -0.20805599 C -2.37826437 0.84711169 -0.49029138 C -3.45174650 -0.06957780 -0.66187833 C -4.62516882 -0.11835492 0.17408686 H -4.85259655 0.56680334 0.97107452 C -5.42026779 -1.21820574 -0.25826483 H -6.36204782 -1.51804748 0.16559659 C -4.74358727 -1.86114947 -1.33939773 H -5.08558518 -2.73222828 -1.86919492 C -3.53208294 -1.15829761 -1.59283228 H -2.78045539 -1.40158496 -2.32206510 C -1.95429480 -1.88762652 1.67254039 H -1.31389789 -1.04093302 1.84904980 C -3.16718083 -2.17738588 2.36873565 H -3.58524784 -1.60376380 3.17691829 C -3.73743362 -3.35234203 1.78857376 H -4.66033509 -3.81902332 2.08444565 C -2.87409105 -3.78796357 0.73655390 H -3.03476021 -4.63810724 0.09756967 C -1.77184372 -2.88236732 0.66398475 H -0.96504605 -2.91774751 -0.04682915 C 1.42726144 1.84183621 -0.17245710 C 2.32629857 1.02645449 -0.38518968 C 3.47921066 0.20493324 -0.50077637 C 3.76183032 -0.77999452 -1.50573331 H 3.11641468 -1.02219738 -2.33077781 C 5.00635127 -1.38995670 -1.18129494 H 5.48626518 -2.17268343 -1.74115010 C 5.50399045 -0.79100641 0.01677261 H 6.42370983 -1.04241879 0.51414036 C 4.56145187 0.18306789 0.45208112 H 4.63768927 0.80994186 1.32246468 C 1.81503048 -2.12708669 1.18521839 H 0.94026211 -1.50885137 1.09019860

C 2.21242212 -3.14711724 0.27004164 H 1.68504239 -3.42029900 -0.62626176 C 3.44929638 -3.69294815 0.73136822 H 4.01599421 -4.46964496 0.24913925 C 3.81395160 - 3.00995011 1.93246939 H 4.70129150 -3.18451048 2.51494264 C 2.80097931 -2.04132307 2.21474440 H 2.78973650 -1.36084444 3.04775303 C 1.07991257 3.10938705 2.39735126 C 0.28164411 4.27309618 2.38225128 H 0.63919171 5.28671044 2.38006517 C -1.08457052 3.87007362 2.36380222 H -1.93872523 4.52328499 2.35913988 C -1.12048842 2.45407054 2.40943536 H -2.00508375 1.84590500 2.41861753 C 0.21220895 1.98224543 2.39592241 H 0.52108622 0.95301413 2.39369763 C -1.36587251 4.39550026 -1.26961526 C -0.33933748 3.70337003 -1.96821752 H -0.48700757 2.93650156 -2.70722864 C 0.90777325 4.21484566 -1.53786657 H 1.87273022 3.89814561 -1.88588458 C 0.66134449 5.18005183 -0.53252520 H 1.40771136 5.74889659 -0.00807249 C -0.75198475 5.30347054 -0.38112162 H -1.25742540 5.97485867 0.28906843 H -2.42209298 4.22908031 -1.37718191 H 2.15430324 3.07681272 2.38303744

`

Table S3: Coordinates for $Cp_2Ti(C_2Fc)_2CuBr^+$ obtained following optimization with the B3LYP/6-31G(d) functional/basis.

Charge = 1 Multiplicity = 2

Ti 0.29074472 3.25370415 0.30191155 Cu -0.00725111 0.47537599 -0.64791841 Br -0.21595965 -1.54163736 -1.76907442 C -1.28887298 1.94519656 -0.02744575 C -2.00047304 0.97059695 -0.38356318 C -3.25465320 0.32398047 -0.60810304 Fe -3.93974198 -1.54208070 0.25991214 C -4.42121325 0.49678561 0.21345518 H -4.47601010 1.13026627 1.08849983 C -5.47405744 -0.29954419 -0.32386841 H -6.48128701 -0.36590150 0.06496427 C -4.95463881 -0.99786713 -1.45914931 H -5.49542403 -1.69666874 -2.08307020 C -3.59138332 -0.62397481 -1.62272920 H -2.89199553 -1.01797813 -2.34601267 C -2.40590209 -2.37879555 1.49159277 H -1.45281916 -1.88800671 1.63925122 C -3.59010254 -2.15353700 2.24455392 H -3.68353750 -1.49979173 3.10167661 C -4.64497443 -2.90845598 1.64465519 H -5.67142161 -2.94900748 1.98341724 C -4.09871416 -3.59850844 0.51564184 H -4.64075659 -4.24695408 -0.15952478 C -2.71528638 -3.26390816 0.42608871 H -2.03065894 -3.55704176 -0.35813444 C 1.56624929 1.71657461 -0.23346128 C 2.12567729 0.64379414 -0.56003025 C 3.21203139 -0.26550531 -0.76801568 Fe 3.65266460 -2.01648094 0.20321869 C 3.33247759 -1.34577751 -1.70857760 H 2.54012228 -1.69007517 -2.35599918 C 4.64390625 -1.88775207 -1.59449107 H 5.03196846 -2.72365790 -2.16183703 C 5.34772473 -1.15946437 -0.58724181 H 6.36304526 -1.34229436 -0.26006730 C 4.47127428 -0.16686969 -0.06537324 H 4.69752329 0.55336404 0.70946897 C 2.13867065 -2.35793404 1.53792495 H 1.30333640 -1.68426632 1.68019555

C 2.20222911 -3.41431931 0.57902144 H 1.42284184 -3.67084038 -0.12525725 C 3.49641144 -4.01160847 0.67018814 H 3.86461092 -4.82833589 0.06275271 C 4.23204747 -3.32260354 1.68243426 H 5.25250949 -3.52851223 1.97886668 C 3.39148455 -2.30043625 2.22130473 H 3.66387817 -1.59610313 2.99673225 C 1.62620554 3.10655786 2.29561032 C 1.13175097 4.42804491 2.20083935 H 1.72663816 5.32215885 2.07605565 C -0.28654022 4.37823782 2.32385184 H -0.95775421 5.22606020 2.31242416 C -0.66033804 3.02516304 2.50835982 H -1.66826031 2.65804351 2.63968225 C 0.51788706 2.23657598 2.47539164 H 0.56597704 1.15976208 2.55810288 H 2.66316945 2.80813219 2.22761172 C -0.94293088 4.43109769 -1.40025774 C 0.04117177 3.64920023 -2.06522679 H -0.15125976 2.82247877 -2.73513958 C 1.31801220 4.13753292 -1.69212135 H 2.26866548 3.75046954 -2.03004550 C 1.12861400 5.20142932 -0.77696442 H 1.91165085 5.79156770 -0.32094227 C -0.27400241 5.38753468 -0.60310170 H -0.74278199 6.14003764 0.01581107 H -2.01392667 4.30696399 -1.48285373

Figure S14: Electron Density from Spin SCF Density (isoval =0.0004). Coordinates used for the calculation listed in Table S3.

bottom) of Cp₂Ti(C₂Ph)₂CuBr

bottom) of Cp₂Ti(C₂Fc)₂CuCl

bottom) of Cp₂Ti(C₂Fc)₂CuBr

bottom) of Cp*₂Ti(C₂Fc)₂CuBr

bottom) of (Me₂CpC₂Fc)₂TiCl₂

Figure S22: UV-Visible Spectrum of $Cp_2Ti(C_2Ph)_2CuBr$ in CH_2Cl_2 .

Figure S23: UV-Visible Spectrum of Cp₂Ti(C₂Fc)₂CuCl in CH₂Cl₂.

Figure S25: UV-Visible Spectrum of Cp₂Ti(C₂Fc)₂Cul in CH₂Cl₂.

Figure S26. UV-Visible Spectrum of $Cp^*_2Ti(C_2Fc)_2CuBr$ in CH_2CI_2 .

Figure S27: UV-Visible Spectrum of ^{TMS}Cp₂Ti(C₂Fc)(C₂Ph)CuBr in CH₂Cl₂.

Figure S28: UV-Visible Spectrum of (Me₂CpC₂Fc)₂TiCl₂ in CH₂Cl₂.