Supporting Information

Stimuli-Responsive Metal-Organic Supercontainers as Synthetic Proton Receptors

Cheng-Zhe Sun,^{†,§,Ω} Li-Ji Cheng,^{†,§,Ω} Yupu Qiao, ^{‡,Ω} Li-Yi Zhang,[†] Zhong-Ning Chen,^{*,†} Feng-Rong Dai^{*,†} Wei Lin, ^{*,I} and Zhenqiang Wang^{*,‡}

 $[\Omega]$ These authors contributed equally to this work.

[†] State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China. E-mail: <u>dfr@fjirsm.ac.cn</u>; Fax: (+86) 591-63173171

[‡] Department of Chemistry & Center for Fluorinated Functional Materials, University of South Dakota, 414 East Clark Street, Churchill-Haines Laboratories, Room 115, Vermillion, SD 57069, United States. E-mail: <u>Zhenqiang.Wang@usd.edu</u>; Fax: (+1) 605-677-6397.

[I]Department of Chemistry, Northwestern University, Evanston, IL, 60208, United States. Email: <u>Wei.Lin@northwestern.edu</u>.

[§] University of Chinese Academy of Sciences, Beijing 100049, China.

	1-Co	1-Zn
Empirical formula	$C_{360}H_{304}Co_{16}N_8O_{84}S_{16}$	$C_{360}H_{304}Zn_{16}N_8O_{84}S_{16}$
Formula weight	7541.93	7644.97
Temperature (K)	100(2)	100(2)
Wavelength	0.71073 Å	0.71073 Å
Crystal system	Triclinic	Triclinic
space group	<i>P</i> -1	<i>P</i> -1
<i>a</i> (Å)	20.249(19)	20.5268(13)
<i>b</i> (Å)	24.77(2)	25.0518(16)
<i>c</i> (Å)	26.23(2)	26.6569(17)
α (°)	111.143(12)	111.239(3)
eta(°)	90.835(13)	90.990(3)
γ (°)	102.933(13)	102.756(3)
$V(Å^3)$	11894(19)	12389.9(14)
Ζ	1	1
$D(calcd) (g cm^{-3})$	1.052	1.025
μ (Mo K_{α}) (mm ⁻¹)	0.672	0.884
<i>F</i> (000)	3872	3928
θ range (°)	1.578 - 25.000	2.031 - 24.999
Limiting indices	-24<=h<=24, -	-24<=h<=24
	29<=k<=29, -	-29<=k<=29
	31<=1<=31	-31<=1<=31
Reflections	95530 / 39594	248803 / 43590
collected / unique	$[R_{int} = 0.0754]$	$[R_{int} = 0.0384]$
Data / restraints / parameters	39594 / 1020 / 2179	43590 / 612 / 2379
GOF	1.090	1.045
$R_{I}(I > 2\sigma(I))$	0.1155	0.0460
$wR_2(I > 2\sigma(I))$	0.3017	0.1295
R_I (all data)	0.1613	0.0586
wR_2 (all data)	0.3441	0.1457
$\Delta \rho / e A^{\circ -3}$	2.103, -0.982	1.075, -0.778

 Table S1. Crystallographic Data for Compounds 1-Co and 1-Zn.

Figure S1. ORTEP drawing of the asymmetric unit of **1-Co** (thermal ellipsoids with 30% probability).

Figure S2. ORTEP drawing of the asymmetric unit of **1-Zn** (thermal ellipsoids with 30% probability).

Figure S3. "*Edge-to-face*" π - π interactions between adjacent pyrenyl groups in **1-Co** and **1-Zn**.

Figure S4. Experimental PXRD patterns of 1-Zn (top) and 1-Co (middle), in comparison with simulated pattern (bottom) calculated from single-crystal structures.

Figure S5. ESI-MS spectrum of 1-Zn indicating the structural integrity in solution.

Figure S6. TGA of as-synthesized and activated samples of 1-Co and 1-Zn.

Figure S7. UV-vis absorption spectra of 1-Co and 1-Zn in CHCl₃ solution.

Figure S8. Emission spectra of 1-Zn (red) and 1-Co (blue) in CHCl₃.

Figure S9. UV-Vis absorption spectra of 1-Zn titrated with CF_3COOH . The arrow indicates a gradual increase of CF_3COOH equivalents.

Figure S10. UV-Vis absorption spectra of 1-Co titrated with CF₃COOH. The arrow indicates a gradual increase of CF₃COOH equivalents.

Figure S11. Emission spectra of 1-Zn titrated with CF_3COOH . The arrow indicates a gradual increase of CF_3COOH equivalents.

Figure S12. Emission spectra of **1-Co** titrated with CF₃COOH. The arrow indicates a gradual increase of CF₃COOH equivalents.

Figure S13. Emission spectra of a mixture of **1-Zn** and excess CF₃COOH titrated with Et₃N. The arrow indicates a gradual increase of Et₃N equivalents.

Figure S14. Emission spectra of a mixture of **1-Co** and excess CF₃COOH titrated with Et₃N. The arrow indicates a gradual increase of Et₃N equivalents.

Figure S15. Switching "on" and "off" of **1-Co** with CF₃COOH/Et₃N can be repeated multiple cycles.

Figure S16. Fluorescence emission spectra of **1-Zn** (black), **1-Zn** added with excess CF₃COOH (red), and **1-Zn**/CF₃COOH treated with excess Et₃N (blue).

Figure S17. Fluorescence emission spectra of **1-Co** (black), **1-Co** added with excess CF₃COOH (red), and **1-Co**/CF₃COOH treated with excess Et₃N (blue).

Figure S18. UV-Vis absorption spectra of a parent type-III MOSC ("MOSC-III-Co") titrated with CF_3COOH , indicating decomposition of the MOSC upon addition of a few CF_3COOH equivalents.

Figure S19. Density functional theory (DFT) calculation results obtained at the M06-L/aug-cc-pVTZ level, showing the highest-occupied molecular orbital (HOMO) and lowest-unoccupied molecular orbital (LUMO) of model compound Me₂-L1 before (top) and after (middle) protonation at the –NH group, and additional protonation of the pyrenyl unit (bottom).

Figure S20. Plot of fluorescent intensity vs. CF₃COOH equivalents for the titration of **1-Zn** with CF₃COOH.

Figure S21. Plot of fluorescent intensity vs. CF₃COOH equivalents for the titration of **1-Co** with CF₃COOH.

Figure S22. Two parallel ¹⁹F NMR titration results, showing the correlation of upfield shifts of CF₃COO⁻ ($\Delta\delta_F$ /ppm) as a function of a gradual increase of CF₃COOH/1-Zn molar ratios.

Figure S23. Hydrogen bonding between H_3O^+ ion and a peripheral carbon atom of the pyrenyl unit in *N*-protonated Me₂-L1.

a) -NH₂⁺/2H₃O⁺ (TYPE I)

Figure S24. Two representative types of hydrogen bonding motifs between two H_3O^+ ions and peripheral carbon atoms of the pyrenyl unit in *N*-protonated Me₂-L1 (–NH₂⁺).

Figure S25. DFT calculation results obtained at the M06-L/aug-cc-pVTZ level, showing relative energies, structures, HOMO, and LUMO of the *N*-protonated model compound Me₂-L1($-NH_2^+$) binding with one H₃O⁺ species, two H₃O⁺ species, and one H₃O⁺(H₂O)₂ species. The energies are relative to the lowest-energy states, which are arbitrarily set to be 0.0 kcal/mol.

Figure S26. DFT calculation results obtained at the M06-L/aug-cc-pVTZ level, showing relative binding energies, HOMOs, and LUMOs of five possible H⁺ binding sites, all of which form a *covalent* C-H bond at the pyrenyl units of the *N*-protonated model compound Me₂-L1($-NH_2^+$). The energies are relative to the lowest-energy state, i.e., binding site III, which is arbitrarily set to be 0.0 kcal/mol. The relative trend of these binding energies is consistent with recently reported results obtained at the RI-MP2/def2-TZVPP level.

Figure S27. Emission spectra of **1-Zn** titrated with 1-acetylpyrene. The arrow indicates a gradual increase of 1-acetylpyrene equivalent.

Figure S28. Emission spectra of 1-Co titrated with 1-pyrenealdehyde. The arrow indicates a gradual increase of 1-pyrenealdehyde equivalent.

Figure S29. Emission spectra of **1-Co** titrated with 1-acetylpyrene. The arrow indicates a gradual increase of 1-acetylpyrene equivalent.

Figure S30. Emission spectra of 1-Co titrated with pyrene. The arrow indicates a gradual increase of pyrene equivalent.

Figure S31. Emission spectra of 1-Zn titrated with 9-anthraldehyde. The arrow indicates a gradual increase of 9-anthraldehyde equivalent.

Figure S32. Emission spectra of 1-Co titrated with 9-anthraldehyde. The arrow indicates a gradual increase of 9-anthraldehyde equivalent.

Figure S33. Emission spectra of 1-Zn titrated with 1-naphthaldehyde. The arrow indicates a gradual increase of naphthaldehyde equivalent.

Figure S34. Emission spectra of 1-Co titrated with 1-naphthaldehyde. The arrow indicates a gradual increase of naphthaldehyde equivalent.

Figure S35. Emission spectra of **1-Zn** titrated with benzaldehyde. The arrow indicates a gradual increase of benzaldehyde equivalent.

Figure S36. Emission spectra of **1-Co** titrated with benzaldehyde. The arrow indicates a gradual increase of benzaldehyde equivalent.

Figure S37. Emission spectra of CF_3COOH -treated **1-Co** titrated with 1pyrenealdehyde; the arrow indicates a gradual increase of 1-pyrenealdehyde equivalent. The result indicates that 1-pyrenealdehyde is competing with CF_3COOH for the H⁺binding sites, causing the fluorescent emission to reverse.