Luminescent Protein Staining with Re(I) Tetrazolato Complexes
Valentina Fiorini,a* Linda Bergamini,a Nicola Monti,a Stefano Zacchini,a Sally E. Plush,b Massimiliano Massi,c Alejandro Hochkoeppler,d,e Alessandra Stefan,d,e* Stefano Stagnia*

a: Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy.
b: School of Pharmacy and Medical Sciences and the Future Industries Institute University of South Australia, Adelaide, Australia.
c: Curtin Institute for Functional Molecules and Interfaces, School of Molecular and Life Science, Curtin University, Kent Street, Bentley 6102 WA, Australia.
d: CSGI, Department of Chemistry, University of Florence, I-50019 Sesto Fiorentino (FI), Italy.
e: Department of Pharmacy and Biotechnology, University of Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy.

ESI – Electronic Supplementary Information
Table S1. Stretching frequencies (cm$^{-1}$) of the CO bands of all the Re(I) complexes reported in this work. Values are relative to solution state (dichloromethane as the solvent) IR spectra recorded at room temperature.

<table>
<thead>
<tr>
<th>Complex</th>
<th>CO A’(1)</th>
<th>CO A’(2)/A''</th>
</tr>
</thead>
<tbody>
<tr>
<td>fac-[Re(CO)$_3$(BCS)(Tph)]$^{2-}$</td>
<td>2029</td>
<td>1918</td>
</tr>
<tr>
<td>fac-[Re(CO)$_3$(BPS)(Tph)]$^{2-}$</td>
<td>2026</td>
<td>1914</td>
</tr>
<tr>
<td>fac-[Re(CO)$_3$(BC)(Tph)]</td>
<td>2022</td>
<td>1918</td>
</tr>
<tr>
<td>fac-[Re(CO)$_3$(BC)(Tph-Me)]$^{+}$</td>
<td>2037</td>
<td>1934</td>
</tr>
</tbody>
</table>
Figure S1: ESI-MS of $\text{fac-}[\text{Re(CO)}_3(\text{BCS})(\text{Tph})]^{2-}$; negative region ions, CH$_3$OH.

Figure S2: ESI-MS of $\text{fac-}[\text{Re(CO)}_3(\text{BPS})(\text{Tph})]^{2-}$; negative region ions, CH$_3$OH.
Figure S3: ESI-MS of \textit{fac-}[\text{Re(CO)}_3(\text{BC})(\text{Tph})], positive region ions, CH$_3$CN.

Figure S4: ESI-MS of \textit{fac-}[\text{Re(CO)}_3(\text{BC})(\text{Tph-Me})]^+$, positive region ions, CH$_3$CN.
Figure S5: 1H NMR of $\textit{fac-}[\text{Re(CO)\textsubscript{3}(BCS)(Tph)}]^{2-}$, CD\textsubscript{3}OD, 400 MHz, 298K.

Figure S6: 13C NMR of $\textit{fac-}[\text{Re(CO)\textsubscript{3}(BCS)(Tph)}]^{2-}$, CD\textsubscript{3}OD, 100 MHz, 298K.
Figure S7: 1H NMR of \textit{fac}-[Re(CO)$_3$(BPS)(Tph)]$^2^-$, CD$_3$OD, 400 MHz, 298K.

Figure S8: 13C NMR of \textit{fac}-[Re(CO)$_3$(BPS)(Tph)]$^2^-$, CD$_3$OD, 100 MHz, 298K.
Figure S9: 1H NMR of $\text{fac-[Re(CO)}_3\text{(BC)(Tph)]]}$, Acetone d^6, 400 MHz, 298K.

Figure S10: 13C NMR of $\text{fac-[Re(CO)}_3\text{(BC)(Tph)]]}$, Acetone d^6, 100 MHz, 298K.
Figure S11: 1H-1H COSY NMR of $\text{fac-}[\text{Re(CO)}_3(\text{BC})(\text{Tph})]$, Acetone d^6, 600 MHz, 298K.
Figure S12: 1H NMR of $\text{fac-}[\text{Re(CO)}_3(\text{BC})(\text{Tph-Me})]^{+}$, Acetone d^6, 400 MHz, 298K.

Figure S13: 13C NMR of $\text{fac-}[\text{Re(CO)}_3(\text{BC})(\text{Tph-Me})]^{+}$, Acetone d^6, 100 MHz, 298K.
Figure S14: 1H-1H COSY NMR of fac-[Re(CO)$_3$(BC)(Tph-Me)]$^+$, Acetone d^6, 600 MHz, 298K.

Figure S15: 1H NMR and NOESY (overlay, 3.22 and 3.55 ppm) NMR of fac-[Re(CO)$_3$(BC)(Tph-Me)]$^+$, Acetone d^6, 400 MHz, 298K.
Figure S16: Absorption Profile of $\text{fac-}[\text{Re(CO)}_3(\text{BCS})(\text{Tph})]^{2-}$ in CH$_3$OH (red line) and H$_2$O (blue line), 10^{-5}M, 298K.

![Absorption Profile](image)

Figure S17: Emission Profile of $\text{fac-}[\text{Re(CO)}_3(\text{BCS})(\text{Tph})]^{2-}$ air-equilibrated (black line) and deoxygenated solution (blue line), 10^{-5}M, CH$_3$OH, 298K.

![Emission Profile](image)

Figure S18: Emission Profile of $\text{fac-}[\text{Re(CO)}_3(\text{BCS})(\text{Tph})]^{2-}$ air-equilibrated (black line) and deoxygenated solution (blue line), 10^{-5}M, H$_2$O, 298K.

![Emission Profile](image)
Figure S19: Emission Map of $\text{fac-}[\text{Re(CO)}_3(\text{BCS})(\text{Tph})]^2^-$, 10^{-5} M, H2O, 298K.

Figure S20: Excitation Profile of $\text{fac-}[\text{Re(CO)}_3(\text{BCS})(\text{Tph})]^2^-$ CH3OH (black line) H2O (blue line), 10^{-5} M, CH3OH, 298K.

Figure S21: Emission Profile of $\text{fac-}[\text{Re(CO)}_3(\text{BCS})(\text{Tph})]^2^-$, 10^{-5} M, CH3OH, 77K.
Figure S22: Absorption Profile of $\text{fac-}[\text{Re(CO)}_3(\text{BPS})(\text{Tph})]\text{^2-}$ in CH$_2$Cl$_2$ (red line) and H$_2$O (blue line), 10$^{-5}$M, 298K.

Figure S23: Emission Profile of $\text{fac-}[\text{Re(CO)}_3(\text{BPS})(\text{Tph})]\text{^2-}$ air-equilibrated (black line) and deoxygenated solution (blue line), 10$^{-5}$M, CH$_2$Cl$_2$, 298K.

Figure S24: Emission Profile of $\text{fac-}[\text{Re(CO)}_3(\text{BPS})(\text{Tph})]\text{^2-}$, 10$^{-5}M, H_2$O, 298K.
Figure S25: Excitation Profile of $\text{fac-}[\text{Re(CO)}_3(\text{BPS})(\text{Tph})]^2-$ CH$_2$Cl$_2$ (black line) H$_2$O (blue line), 10$^{-5}$M, CH$_3$OH, 298K.

Figure S26: Emission Profile of $\text{fac-}[\text{Re(CO)}_3(\text{BPS})(\text{Tph})]^2-$, 10$^{-5}M, CH_2Cl_2$, 77K.
Figure S27: Absorption Profile of $\text{fac-}[\text{Re(CO)}_3\text{(BC)(Tph)}]$ 10^{-5}M, CH$_2$Cl$_2$, 298K.

Figure S28: Emission Profile of $\text{fac-}[\text{Re(CO)}_3\text{(BC)(Tph)}]$ air-equilibrated (black line) and deoxygenated solution (blue line), 10^{-5}M, CH$_2$Cl$_2$, 298K.

Figure S29: Excitation Profile of $\text{fac-}[\text{Re(CO)}_3\text{(BC)(Tph)}]$ 10^{-5}M, CH$_2$Cl$_2$, 298K.
Figure S30: Emission Profile of $\text{fac-[Re(CO)\textsubscript{3}(BC)(Tph)]}$, $\lambda_{\text{exc}} = 370$ nm, 10^{-5}M, CH\textsubscript{2}Cl\textsubscript{2}, 298K.

Figure S31: Emission Profile of $\text{fac-[Re(CO)\textsubscript{3}(BC)(Tph)]}$, $\lambda_{\text{exc}} = 302$ nm, 10^{-5}M, CH\textsubscript{2}Cl\textsubscript{2}, 298K.

Figure S32: Emission Profile of $\text{fac-[Re(CO)\textsubscript{3}(BC)(Tph)]}$, 10^{-5}M, CH\textsubscript{2}Cl\textsubscript{2}, 77K.
Figure S33: Absorption Profile of $\textit{fac-}[\text{Re(CO)}_3\text{BC}(\text{Tph-Me})]^+$ 10^{-5}M, CH$_2$Cl$_2$, 298K.

Figure S34: Emission Profile of $\textit{fac-}[\text{Re(CO)}_3\text{BC}(\text{Tph-Me})]^+$ air-equilibrated (black line) and deoxygenated solution (blue line), 10^{-5}M, CH$_2$Cl$_2$, 298K.

Figure S35: Excitation Profile of $\textit{fac-}[\text{Re(CO)}_3\text{BC}(\text{Tph-Me})]^+$ 10^{-5}M, CH$_2$Cl$_2$, 298K.
Figure S36: Emission Profile of $\text{fac-}[\text{Re(CO)}_3(\text{BC})(\text{Tph-Me})]^+$, $\lambda_{\text{exc}} = 370$ nm, 10^{-5}M, CH$_2$Cl$_2$, 298K.

Figure S37: Emission Profile of $\text{fac-}[\text{Re(CO)}_3(\text{BC})(\text{Tph-Me})]^+$, $\lambda_{\text{exc}} = 302$ nm, 10^{-5}M, CH$_2$Cl$_2$, 298K.

Figure S38: Emission Profile of $\text{fac-}[\text{Re(CO)}_3(\text{BC})(\text{Tph-Me})]^+$ ($\lambda_{\text{exc}} = 370$ nm blue line) and $\text{fac-}[\text{Re(CO)}_3(\text{BC})(\text{Tph-Me})]^+$ ($\lambda_{\text{exc}} = 302$ nm black line), 10^{-5}M, CH$_2$Cl$_2$, 298K.
Figure S39: Emission Profile of \(\text{fac-[Re(CO)}_3\text{(BC)(Tph-Me)}]^+ \), \(10^{-5} \text{M}, \text{CH}_2\text{Cl}_2, 77\text{K} \).

Figure S40: Excitation Profile of \(\text{fac-[Re(CO)}_3\text{(BC)(Tph)}] \) (black line) and \(\text{fac-[Re(CO)}_3\text{(BC)(Tph-Me)}]^+ \) (blue line), \(10^{-5} \text{M}, \text{CH}_2\text{Cl}_2, 298\text{K} \).

Figure S41: Normalized Emission Profile of \(\text{fac-[Re(CO)}_3\text{(BC)(Tph)}] \) (black line) and \(\text{fac-[Re(CO)}_3\text{(BC)(Tph-Me)}]^+ \) (blue line), \(10^{-5} \text{M}, \text{CH}_2\text{Cl}_2, 298\text{K} \).
Table S2 - Crystal data and collection details for *fac-[Re(CO)₃(BC)(Tph)]*.

<table>
<thead>
<tr>
<th>Formula</th>
<th>C₃₆H₂₅N₆O₃Re</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fw</td>
<td>775.82</td>
</tr>
<tr>
<td>T, K</td>
<td>100(2)</td>
</tr>
<tr>
<td>λ, Å</td>
<td>0.71073</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Orthorhombic</td>
</tr>
<tr>
<td>Space Group</td>
<td>Pbca</td>
</tr>
<tr>
<td>a, Å</td>
<td>10.9090(8)</td>
</tr>
<tr>
<td>b, Å</td>
<td>22.6914(18)</td>
</tr>
<tr>
<td>c, Å</td>
<td>24.2243(19)</td>
</tr>
<tr>
<td>Cell Volume, Å³</td>
<td>5996.5(8)</td>
</tr>
<tr>
<td>Z</td>
<td>8</td>
</tr>
<tr>
<td>Dc, g cm⁻³</td>
<td>1.719</td>
</tr>
<tr>
<td>μ, mm⁻¹</td>
<td>4.102</td>
</tr>
<tr>
<td>F(000)</td>
<td>3056</td>
</tr>
<tr>
<td>Crystal size, mm</td>
<td>0.16×0.13×0.12</td>
</tr>
<tr>
<td>θ limits, °</td>
<td>1.681–26.999</td>
</tr>
<tr>
<td>Index ranges</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-13 ≤ h ≤ 13</td>
</tr>
<tr>
<td></td>
<td>-28 ≤ k ≤ 28</td>
</tr>
<tr>
<td></td>
<td>-30 ≤ l ≤ 30</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>81467</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>6538 [Rint = 0.0493]</td>
</tr>
<tr>
<td>Completeness to θ max</td>
<td>100.0%</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>6538 / 0 / 417</td>
</tr>
<tr>
<td>Goodness on fit on F²</td>
<td>1.189</td>
</tr>
<tr>
<td>R₁ (I>2σ(I))</td>
<td>0.0333</td>
</tr>
<tr>
<td>wR₂ (all data)</td>
<td>0.0548</td>
</tr>
<tr>
<td>Largest diff. peak and hole, e Å⁻³</td>
<td>1.069 / -2.060</td>
</tr>
</tbody>
</table>