Supporting Information

Hydrophosphination of alkenes and alkynes with primary phosphine catalyzed by zirconium complexes bearing aminophenolato ligands

Yu Zhang, Xinxin Wang, Yaorong Wang, Dan Yuan*, and Yingming Yao*

†Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Dushu Lake Campus, Soochow University, Suzhou 215123, People's Republic of China

*To whom correspondence should be addressed. Email: yuandan@suda.edu.cn; yaoym@suda.edu.cn

Content

Preparation of L ⁴ H ₂	S2
Characterizations of hydrophosphination products	S2
¹ H and ¹³ C NMR spectra of ligand precursor L ⁴ H ₂	S15
¹ H and ¹³ C NMR spectra of complex 4	S16
¹ H and ³¹ P NMR spectra of reaction mixtures	S18
Kinetic study	S50
Crystallographic data of complex 4	S55

Preparation of ligand precursor L⁴H₂

2,4-di-*tert*-butylphenol (100 mmol, 20.63 g), paraformaldehyde (100 mmol, 3.00 g) and cyclohexanamine (50 mmol, 5.72 g) were mixed in a 250 mL round bottom flask. The resulting mixture was heat to 100 °C and stirred for 12 hours. After that, the pure product was isolated by silica gel chromatography. Yield 17.40 g, 65%. ¹H NMR (400 MHz, CDCl₃): δ 7.22 (s, 2H, ArH), 6.92 (s, 2H, ArH), 3.77 (d, 4H, NCH₂), 2.73 (t, 1H, NCH), 1.94 (m, 2H, CH₂), 1.81 (m, 2H, CH₂), 1.62 (m, 2H, CH₂), 1.42 (d, 18H, J = 6.05 Hz, C(CH₃)₃), 1.29 (d, 18H, J = 5.63 Hz, C(CH₃)₃), 1.28 (m, 4H, CCH₂). ¹³C{¹H}NMR (100 MHz, CDCl₃): 152.8, 141.6, 136.3, 125.3, 123.6, 122.0 (Ar-C), 57.6 (Ar-CH₂N), 52.7 (Ar-CH₂N), 36.1 (NCH), 34.4 (*C*(CH₃)₃), 34.5 (*C*(CH₃)₃), 32.1 (C(*C*H₃)₃), 29.9 (C(*C*H₃)₃), 27.7 (*C*H₂), 26.4 (*C*H₂), 26.0 (*C*H₂). MS calcd m/z 536.4468 for C₃₆H₅₈NO₂ [M + H]⁺, Found: 536.4485.

Characterizations of hydrophosphination products

The conversion was determined by comparison of the integration of remaining styrene and the new product. The ratio of **7** and **8** was determined by ³¹P NMR. Taking substrate **5**k as an example (see below):

Fig. S1 ¹H NMR of the conversion of substrate **5**k

7k:8k=8.39:1

Fig. S2 ^{31}P NMR of the conversion of substrate 5k

Parameters for quantitative ³¹P NMR experiment

General		
PULPROG	zgig30	
TD	65536	
SWH [Hz, ppm]	49019.61	302.654
AQ [sec]	0.6684672	
RG	203	
DW [µsec]	10.200	
DE [µsec]	6.50	
D1	10.00000000	
d11	0.03000000	
DS	4	
NS	16	
TD0	1	
Channel f1		
SFO1 [MHz]	161.9658745	
O1 [Hz, ppm]	-9718.54	-60
NUC1	31P	
P1 [µsec]	7.10	
PLW1 [W, -dBW]	75	-18.75
Channel f2		
SFO2 [MHz]	400.1316005	
O2 [Hz, ppm]	1600.50	4.000
NUC2	1H	
CPDPRG 2	Waltz16	
PCPD2 [µsec]	90.00	
PLW2 [W, -dBW]	21.979	-13.42
PLW12 [W, -dBW]	0.27134	5.66

phenethyl(phenyl)phosphine (7a)^{1a}

7a was prepared from 5a (57 µL, 0.5 mmol) and 7 (82 µL, 0.75 mmol). ¹H NMR (400 MHz, C₆D₆): δ 7.36–7.33 (m, 2H, ArH), 7.12 (t, 3H, ArH), 7.08–7.03 (m, 3H, ArH), 6.94 (d, ArH, 2H, J = 7.76 Hz), 4.36 (dt, J = 206.12 Hz and ²J = 14.17 Hz, PH), 2.67–2.54 (m, 2H, CH₂), 1.98–1.90 (m, 1H, CH₂), 1.86–1.79 (m, 1H, CH₂). ³¹P{¹H} NMR (162 MHz, C₆D₆): -52.9.

(2-methylphenethyl)(phenyl)phosphine (7b)

7b was prepared from 5b (64 μ L, 0.5 mmol) and 7 (82 μ L, 0.75 mmol). Crude product was dissolved in anhydrous hexane (5 mL), and filtered. The solvent was removed in vacuo, and the resulting mixture was purified by passing through a short plug of silica gel (petroleum ether as eluent) under inert conditions, which gave the pure product in 90 mg (0.39 mol, 79% yield). ¹H NMR (400 MHz, C₆D₆): δ 7.37–7.33 (m, 2H, ArH), 7.07–7.02 (m, 5H, ArH), 7.00-6.94 (m, ArH, 2H), 4.39 (dt, J = 206.16 Hz and ${}^{2}J = 13.74$ Hz, PH), 2.67-2.50 (m, 2H, CH₂), 1.96 (s, 3H, CH₃), 1.92-1.76 (m, 2H, CH₂). ³¹P{¹H} NMR (162 MHz, C_6D_6): -51.6. ¹³C{¹H} NMR (100 MHz, C_6D_6): 141.1 (d, J = 8.62 Hz, C_6H_4), 136.5 (d, J = 11.88 Hz, Ar-C), 134.4 (d, J = 15.36 Hz, Ar-C), 130.9 (s, Ar-C), 129.1 (d, J = 5.63 Hz, Ar-C), 126.8 (d, J = 9.87 Hz, Ar-C), 126.8 (s, Ar-C), 32.7 (d, J = 8.28 Hz, CH_2), 24.8 (d, J = 12.56 Hz, CH_2), 19.4 (s, CH₃). MS calcd m/z 267.0915 for $C_{15}H_{17}OP$ [M + Na]⁺, Found: 267.0929. Phosphines (in small amount for MS spectrometry measurement) are oxidized when waiting for measurement.

(3-methylphenethyl)(phenyl)phosphine (7c)

7c was prepared from **5c** (66 μ L, 0.5 mmol) and **7** (82 μ L, 0.75 mmol). Crude product was dissolved in anhydrous hexane (5 mL), and filtered. The solvent was removed in vacuo, and the resulting mixture was purified by passing through a short plug of silica gel (petroleum ether as eluent) under inert conditions, which gave the pure product in 91 mg (0.4 mol, 80% yield). ¹H NMR (400 MHz, C₆D₆): δ 7.38–7.34 (m, 2H, ArH), 7.10-7.03 (m, 4H, ArH), 6.90–6.78 (m, 3H, ArH), 4.39 (dt, J = 206.22 Hz and ²J = 13.57 Hz, PH), 2.68–2.53 (m, 2H, CH₂), 2.12 (s, 3H, CH₃), 2.02–1.81 (m, 2H, CH₂). ³¹P{¹H} NMR (162 MHz, C₆D₆): -52.7. ¹³C{¹H} NMR (100 MHz, C₆D₆): δ 142.9 (d, J = 7.39 Hz, Ar-C), 138.3 (s, Ar-C), 134.3 (d, J = 14.30 Hz, Ar-C), 129.7 (s, Ar-C), 129.1 (d, J = 5.53 Hz, Ar-C), 127.4 (s, Ar-C), 126.0 (s, Ar-C), 35.2 (d, J = 8.25 Hz, CH₂), 26.1 (d, J = 13.41 Hz, CH₂), 21.7 (s, CH₃). MS calcd m/z 245.1095 for C₁₅H₁₇OP [M + H]⁺, Found: 245.1097. Phosphines (in small amount for MS spectrometry measurement) are oxidized when waiting for measurement.

(4-methylphenethyl)(phenyl)phosphine (7d)^{1a}

7d was prepared from 5d (66 µL, 0.5 mmol) and 7 (82 µL, 0.75 mmol). ¹H NMR (400 MHz, C₆D₆): δ 7.38–7.34 (m, 2H, ArH), 7.08-7.06 (m, 2H, ArH), 6.98–6.95 (m, 3H, ArH), 6.90 (d, ArH, 2H, J = 7.81 Hz), 4.38 (dt, J = 207.15 Hz and ²J = 14.81 Hz, PH), 2.70–2.55 (m, 2H, CH₂), 2.13 (s, 3H, CH₃), 2.02–1.92 (m, 1H, CH₂), 1.86–1.82 (m, 1H, CH₂). ³¹P{¹H} NMR (162 MHz, C₆D₆): -53.0.

(4-(*tert*-butyl)phenethyl)(phenyl)phosphine (7e)^{1b}

7e was prepared from 5e (92 µL, 0.5 mmol) and 7 (82 µL, 0.75 mmol). ¹H NMR (400 MHz, C₆D₆): δ 7.37–7.34 (m, 2H, ArH), 7.28-7.22 (m, 3H, ArH), 7.08-7.06 (m, 2H, ArH), 6.98 (d, ArH, 2H, J = 7.70 Hz), 4.40 (dt, J = 205.42 Hz and ²J = 15.68 Hz, PH), 2.73–2.61 (m, 2H, CH₂), 2.05–1.97 (m, 1H, CH₂),

1.93–1.84 (m, 1H, CH₂), 1.24 (d, C(CH₃)₃, 9H, J = 3.92 Hz). ³¹P{¹H} NMR (162 MHz, C₆D₆): -52.9.

(4-methoxyphenethyl)(phenyl)phosphine (7f)^{1a}

7f was prepared from 5f (66 μL, 0.5 mmol) and 7 (82 μL, 0.75 mmol). ¹H NMR (400 MHz, C₆D₆): δ 7.38–7.35 (m, 2H, ArH), 7.11-7.05 (m, 3H, ArH), 6.87 (d, ArH, 2H, J = 7.78 Hz), 6.79 (d, ArH, 2H, J = 9.18 Hz), 4.39 (dt, J = 206.00 Hz and ²J = 13.03 Hz, PH), 3.32 (s, 3H, CH₃), 2.70–2.55 (m, 2H, CH₂), 1.99–1.95 (m, 1H, CH₂), 1.85–1.83 (m, 1H, CH₂). ³¹P{¹H} NMR (162 MHz, C₆D₆): -53.4.

(2-fluorophenethyl)(phenyl)phosphine (7g)

7g was prepared from 5g (60 μL, 0.5 mmol) and 7 (82 μL, 0.75 mmol). Crude product was dissolved in anhydrous hexane (5 mL), and filtered. The solvent was removed in vacuo, and the resulting mixture was purified by passing through a short plug of silica gel (petroleum ether as eluent) under inert conditions, which gave the pure product in 95 mg (0.41 mol, 82% yield). ¹H NMR (400 MHz, C₆D₆): δ 7.35–7.31 (m, 2H, ArH), 7.08–7.02 (m, 3H, ArH), 6.83–6.73 (m, 4H, ArH), 4.35 (dt, J = 206.09 Hz and ²J = 13.93 Hz, PH), 2.74 –2.58 (m, 2H, CH₂), 2.00–1.80 (m, 2H, CH₂). ³¹P{¹H} NMR (162 MHz, C₆D₆): -53.2. ¹³C{¹H} NMR (100 MHz, C₆D₆): δ 163.1 (s, Ar-C), 160.6 (s, Ar-C), 137.2 (d, J = 15.11 Hz, Ar-C), 132.0 (d, J = 5.11 Hz, Ar-C), 129.1 (d, J = 5.71 Hz, Ar-C), 124.5 (d, J = 3.31 Hz, Ar-C), 115.9 (d, J = 22.14 Hz, Ar-C), 29.4 (d, J = 8.05 Hz, CH₂), 24.0 (d, J = 13.76 Hz, CH₂). MS calcd m/z 249.0845 for $C_{14}H_{15}FOP [M + H]^+$. Found: 249.0853. Phosphines (in small amount for MS spectrometry measurement) are oxidized when waiting for measurement.

(2-chlorophenethyl)(phenyl)phosphine (7h)^{1c}

7h was prepared from **5h** (64 μ L, 0.5 mmol) and **7** (82 μ L, 0.75 mmol). ¹H NMR (400 MHz, C₆D₆): δ 7.38–7.34 (m, 2H, ArH), 7.09–7.06 (m, 2H, ArH), 7.97–7.00 (m, 3H, ArH), 6.85–6.78 (m, 2H, ArH), 4.38 (dt, J = 206.74 Hz and ²J = 13.96 Hz, PH), 2.83–2.70 (m, 2H, CH₂), 1.98–1.93 (m, 1H, CH₂), 1.89–1.83 (m, 1H, CH₂). ³¹P{¹H} NMR (162 MHz, C₆D₆): -51.8.

(2-bromophenethyl)(phenyl)phosphine (7i)

7i was prepared from 5i (63 μL, 0.5 mmol) and 7 (82 μL, 0.75 mmol). Crude product was dissolved in anhydrous hexane (5 mL), and filtered. The solvent was removed in vacuo, and the resulting mixture was purified by passing through a short plug of silica gel (petroleum ether as eluent) under inert conditions, which gave the pure product in 117 mg (0.40 mol, 80% yield). ¹H NMR (400 MHz, C₆D₆): δ 7.38–7.32 (m, 2H, ArH), 7.08–7.06 (m, 2H, ArH), 7.01–6.96 (m, 2H, ArH), 6.85–6.84 (m, 1H, ArH), 6.77–6.75 (m, 1H, ArH), 6.66–6.61 (m, 1H, ArH), 4.40 (dt, J = 206.85 Hz and ²J = 13.6 Hz, PH), 2.82 –2.68 (m, 2H, CH₂), 1.97–1.80 (m, 2H, CH₂). ³¹P{¹H} NMR (162 MHz, C₆D₆): -51.7. ¹³C{¹H} NMR (100 MHz, C₆D₆): 134.4 (d, J = 16.56 Hz, Ar-C), 133.4 (s, Ar-C), 130.8 (s, Ar-C), 129.1 (d, J = 5.67 Hz, Ar-C), 127.9 (s, Ar-C), 124.9 (s, Ar-C), 35.7 (d, J = 8.45 Hz, CH₂), 24.2 (d, J = 14.32 Hz, CH₂). MS calcd m/z 330.9863 for C₁₄H₁₄BrOP [M + Na]⁺. Found: 330.9881. Phosphines (in small amount for MS spectrometry measurement) are oxidized when waiting for measurement.

(3-fluorophenethyl)(phenyl)phosphine (7j)

7j was prepared from 5j (60 µL, 0.5 mmol) and 7 (82 µL, 0.75 mmol). Crude product was dissolved in anhydrous hexane (5 mL), and filtered. The solvent was removed in vacuo, and the resulting mixture was purified by passing through a short plug of silica gel (petroleum ether as eluent) under inert conditions, which gave the pure product in 74 mg (0.32 mol, 64% yield). ¹H NMR (400 MHz, C₆D₆): δ 7.33–7.29 (m, 2H, ArH), 7.09–7.05 (m, 3H, ArH), 6.87 - 6.54 (m, 4H, ArH), 4.28 (dt, J = 206.34 Hz and ²J = 13.03 Hz, PH), 2.51-2.34 (m, 2H, CH₂), 1.84-1.65 (m, 2H, CH₂). ³¹P{¹H} NMR (162 MHz, C₆D₆): -52.9. ¹³C{¹H} NMR (100 MHz, C_6D_6): δ 165.0 (s, Ar-C), 162.6 (s, Ar-C), 134.3 (d, J = 15.22 Hz, Ar-C), 130.4 (d, J = 7.96 Hz, Ar-C), 129.1 (d, J = 6.39 Hz, Ar-C), 124.5 (d, J = 2.97 Hz, Ar-C), 115.8 (d, J = 20.36 Hz, Ar-C), 113.5 $(d, J = 20.36, Ar-C), 34.6 (d, J = 7.62 Hz, CH_2), 25.3 (d, J = 14.37 Hz, CH_2).$ MS calcd m/z 249.0845 for $C_{14}H_{15}FOP$ [M + H]⁺. Found: 249.0835. Phosphines (in small amount for MS spectrometry measurement) are oxidized when waiting for measurement.

(3-chlorophenethyl)(phenyl)phosphine (7k)^{1c}

7k was prepared from 5k (64 μ L, 0.5 mmol) and 7 (82 μ L, 0.75 mmol). ¹H NMR (400 MHz, C₆D₆): δ 7.30–7.28 (m, 2H, ArH), 7.09–7.06 (m, 2H, ArH), 7.97–7.99 (m, 3H, ArH), 6.79–6.65 (m, 1H, ArH), 6.60 (d, ArH, 1H, J = 7.61

Hz), 4.28 (dt, J = 206.43 Hz and 2 J = 14.19 Hz, PH), 2.46 –2.32 (m, 2H, CH₂), 1.78–1.70 (m, 1H, CH₂), 1.67–1.63 (m, 1H, CH₂). 31 P{¹H} NMR (162 MHz, C₆D₆): -52.7.

(3-bromophenethyl)(phenyl)phosphine (7l)^{1a}

71 was prepared from 51 (65 µL, 0.5 mmol) and 7 (82 µL, 0.75 mmol). ¹H NMR (400 MHz, C₆D₆): δ 7.30–7.25 (m, 2H, ArH), 7.10–7.06 (m, 2H, ArH), 7.02–6.96 (m, 3H, ArH), 6.71–6.60 (m, 2H, ArH), 4.28 (dt, J = 206.64 Hz and ²J = 13.89 Hz, PH), 2.41 –2.28 (m, 2H, CH₂), 1.78–1.70 (m, 1H, CH₂), 1.66–1.59 (m, 1H, CH₂). ³¹P{¹H} NMR (162 MHz, C₆D₆): -52.6.

(4-fluorophenethyl)(phenyl)phosphine (7m)^{1b}

7m was prepared from 5m (60 µL, 0.5 mmol) and 7 (82 µL, 0.75 mmol). ¹H NMR (400 MHz, C₆D₆): δ 7.35–7.25 (m, 2H, ArH), 7.09–7.06 (m, 2H, ArH), 6.97–6.95 (m, 3H, ArH), 6.65–6.62 (m, 2H, ArH), 4.30 (dt, J = 205.91 Hz and ²J = 13.41 Hz, PH), 2.50 –2.39 (m, 2H, CH₂), 1.85–1.79 (m, 1H, CH₂), 1.74–1.69 (m, 1H, CH₂). ³¹P{¹H} NMR (162 MHz, C₆D₆): -52.5.

(4-chlorophenethyl)(phenyl)phosphine (7n)^{1b}

7n was prepared from **5n** (60 µL, 0.5 mmol) and **7** (82 µL, 0.75 mmol). ¹H NMR (400 MHz, C₆D₆): δ 7.34–7.31 (m, 2H, ArH), 7.10–7.05 (m, 3H, ArH), 6.99–6.97 (m, 2H, ArH), 6.59 (d, ArH, 2H, J = 8.59 Hz), 4.30 (dt, J = 206.59 Hz and ²J = 14.61 Hz, PH), 2.46 –2.34 (m, 2H, CH₂), 1.83–1.73 (m, 1H, CH₂), 1.70–1.64 (m, 1H, CH₂). ³¹P{¹H} NMR (162MHz, C₆D₆): -53.0.

(4-bromophenethyl)(phenyl)phosphine (7o)^{1b}

70 was prepared from **5p** (65 µL, 0.5 mmol) and **7** (82 µL, 0.75 mmol). ¹H NMR (400 MHz, C₆D₆): δ 7.32–7.30 (m, 2H, ArH), 7.09–7.07 (m, 3H, ArH), 7.00–6.96 (m, 2H, ArH), 6.51 (d, ArH, 2H, J = 8.83 Hz), 4.29 (dt, J = 205.02 Hz and ²J = 15.71 Hz, PH), 2.43 –2.31 (m, 2H, CH₂), 1.81–1.73 (m, 1H, CH₂), 1.69–1.63 (m, 1H, CH₂). ³¹P{¹H} NMR (162 MHz, C₆D₆): -53.0.

phenyl(2-phenylpropyl)phosphine (7p)^{1c}

7p was prepared from **5p** (66 µL, 0.5 mmol) and **7** (82 µL, 0.75 mmol). ¹H NMR (400 MHz, C₆D₆): δ 7.37–7.35 (m, 3H, ArH), 7.14-7.10 (m, 2H, ArH), 7.03–7.05 (m, 3H, ArH), 6.99–6.97 (m, ArH, 2H), 4.33 (dm, J = 207.39 Hz, PH), 2.74 (m, 1H, CH), 2.03 (dm, J = 89.94 Hz, CH₂), 1.18 (dd, 3H, CH₃). ³¹P{¹H} NMR (162 MHz, C₆D₆): -48.8.

2-(2-(phenylphosphinyl)ethyl)pyridine (7q)^{1a}

7**q** was prepared from 5**q** (54 μL, 0.5 mmol) and 7 (82 μL, 0.75 mmol). ¹H NMR (400 MHz, C₆D₆): δ 8.60–8.59 (m, 1H, ArH), 7.43–7.39 (m, 2H, ArH), 7.18–7.17 (m, 1H, ArH), 7.09–7.07 (m, 3H, ArH), 6.83–6.82 (m, 1H, ArH), 6.60 (d, ArH, 1H, J = 5.66 Hz), 4.37 (dt, J = 206.68 Hz and ²J = 14.05 Hz, PH), 2.46 –2.35 (m, 2H, CH₂), 1.85–1.79 (m, 1H, CH₂), 1.86–1.74 (m, 2H, CH₂). ³¹P{¹H} NMR (162 MHz, C₆D₆): -52.5.

4-(2-(phenylphosphinyl)ethyl)pyridine (7r)^{1a}

7r was prepared from 5r (53 μ L, 0.5 mmol) and 7 (82 μ L, 0.75 mmol). ¹H NMR (400 MHz, C₆D₆): δ 8.48–8.46 (m, 1H, ArH), 7.40–7.36 (m, 2H, ArH),

7.06–7.05 (m, 1H, ArH), 7.00–7.97 (m, 3H, ArH), 6.60–6.57 (m, 2H, ArH), 4.41 (dt, J = 206.78 Hz and ${}^{2}J$ = 13.73 Hz, PH), 2.88 –2.79 (m, 2H, CH₂), 2.29–2.17 (m, 2H, CH₂). ${}^{31}P{}^{1}H$ NMR (162 MHz, C₆D₆): -52.5.

methyl 3-(phenylphosphinyl)propanoate (7s)^{1a}

7s was prepared from 5s (45 μ L, 0.5 mmol) and 7 (82 μ L, 0.75 mmol). ¹H NMR (400 MHz, C₆D₆): 4.30 (dt, J = 208.19 Hz and ²J = 14.43 Hz, PH), 3.26 (s, 3H, CH₃), 2.20–2.13 (m, 2H, CH₂), 1.87–1.82 (m, 2H, CH₂). ³¹P{¹H} NMR (162 MHz, C₆D₆): -51.4.

bicyclo[2.2.1]heptan-2-yl(phenyl)phosphine (7t)^{1c}

7t was prepared from 5t (47 mg, 0.5 mmol) and 7 (82 μL, 0.75 mmol). ¹H NMR (400 MHz, C₆D₆): δ 7.45 (m, C₆H₅, 2 H), 7.07 (m, C₆H₅, 3H), 4.42 (dd, J = 203.40 Hz and ${}^{2}J$ = 8.17 Hz, PH), 4.22 (dd, J = 207.01 Hz and ${}^{2}J$ = 7.22 Hz, PH), 3.27 (m, CH₂, 1H), 2.13 (s, CH, 1H), 2.05 (t, CH₂, 1H), 1.88 (m, CH₂, 2 H), 1.58–1.48 (m, CH₂, 2H), 1.35–1.29 (m, CH₂, 2H), 1.09 (t, CH, 1 H), 1.13–0.99 (m, CH₂, 2H). ³¹P{¹H} NMR (162 MHz, C₆D₆): δ –37.6, –39.4.

(Z)-(1,2-diphenylvinyl)(phenyl)phosphine (7u)^{1d}

7u was prepared from **5u** (0.089 g, 0.5 mmol) and **7** (55 μ L, 0.5 mmol). ¹H NMR (400 MHz, C₆D₆): δ 7.81-7.15 (m, C₆H₅, 10H), 7.24 (d, J = 1.65Hz, CH), 5.25 (d, J = 223.83 Hz, PH). ³¹P{¹H} NMR (162 MHz, C₆D₆): δ –54.0.

(Z)-phenyl(1-phenylprop-1-en-2-yl)phosphine (7v)^{1d}

7v was prepared from 5v (63 μ L, 0.5 mmol) and 7 (55 μ L, 0.5 mmol). ¹H NMR (400 MHz, C₆D₆): δ 7.49-6.97 (m, C₆H₅, 10H), 6.96 (d, J = 5.12 Hz, CH), 4.62 (d, J =

220.31 Hz, PH). 1.88 (d, J = 4.74 Hz, J = 1.35 Hz, CH₃). ³¹P{¹H} NMR (162 MHz, C₆D₆): δ –52.5.

IR spectrum of complex 4

The strong absorptions at 2954 and 2863 cm⁻¹ are assigned to the stretching vibration of $-CH_3$ and $-CH_2$ - groups. The absorptions at 1444-1604 cm⁻¹ are assigned to the stretching vibration of benzene ring. The stretching vibration of C-O bond is observed at 1239 cm⁻¹.

IR: 3651m, 2954vs, 2863s, 2360m, 2342m, 1604m, 1479s, 1444s, 1415m, 1391m, 1361m, 1268w, 1239m, 1203m, 1170m, 1131m, 1078m, 915m, 873m, 845m, 807m, 765m, 752m, 729m, 694W, 648W, 623W, 605W, 549m, 465m.

¹H and ³¹P NMR spectra of reaction mixtures

33333 35033340 35033340 3603334 37333 3733	28 22 33 33 28 82 33 33 33 33 33 33 33 33 33 33 33 33 33	33288889962 555 50
	→ ↓↓↓ ₩ ₩ ₩ ₩	

888888	97 887 58 58 58	66 62	11 8	30 30 30	0	8	58	8359935000000000000000000000000000000000
	00000	ini ∼∕	ີ່ ນ. `∕`	444	4.	က်	ເບິ່	

3888	97 88 66 55 55 55	28	60	36 36 35	07	83	58	8288092988880333555988 8288806888888888888888888888888888888
<u>, , , , , , , , , , , , , , , , , , , </u>	000000 1	ini ∖∕	ີນ. ບັນ	444	4.	(1	ς. Γ	

65 33 33 35 33 35 35 35 35 35 35 35 35 35	99 97 79 79 70 70	33 33 33 07	79 57	71 66 62 62	97 85 83 85 85 85 85 85 85 85 85 85 85 85 85 85
	~~~~	444 4	ຕ່ຕ່	2000	
		<u> </u>			







-- 123 8







--53.2

-50 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -10 -20 -30 -40 -50 115.9 115.9 115.9 > 163 1
> 160 6 - 136. 1 -- 28. 6 -- 24. 5 PHPh 7g (purified) al beneration of the second statement of the second statement of the second statement of the second statement o 190 180 170 160 150 140 130 120 110 100 90 f1(ppm) 

35 35 35 35	98 97 97 79 73 71 73 71	35 35 35 83 83	8388933498873388
ストイン	<b>੶</b>	444 4 6 6	. 44444444444















222 26 26 26 26 26 26 26 26 26 26 26 26	33340 33740	46	930	01 28 28 01 28 28	74 58	334555	82 82 82 82 82 82 82 82 82 82 82 82 82 8
	0000 V	יס. ∠∕	,5 <b>5</b> .	444	ຕ່ຕ່ 		╤┙╤┙╤┙╤┙╤┙╤┙╤┙













# --52.9

2228 2627739493000883258 2807773493000883258	43 38	66 66	252	5233	46¥S	87778 63778
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ഗവ	ৰ ৰ	ৰ ৰ ৰ	က်က်က်က်	~~~	
			\sim			

;	227 000 95 95	63	4 43 38 38	39 39	0 1 86	07 230 30	22	3449 39449	85 85 83 83 83 83 83 83 83 83 83 83 83 83 83
ι.	~~~~ <u>~</u> 00	Ö.		പ്പ	<u>ب</u> ب	ちちち ち	ന്ന്	2000	· · · · · · · · · · · · · · · · · · ·
_		1		\leq	\leq		1 1		

--- 123.8

33333	07 51 49	0287280	76 776 335 335 335 335 335 335 335 335 335 33	81 81 82 83 83 83 83 83 83 83 83 83 83 83 83 83
	, , , , , , , , , , , , , , , , , , ,	44444		

--- 123.8

Kinetic study

All manipulations were performed in glovebox under a nitrogen atmosphere. Complex **1** was mixed with styrene and phenylphosphine at room temperature and stirred for desired time. Amounts of catalyst and substrates are provided in captions of each plot. Reaction mixtures were taken after each interval and analyzed by NMR in C_6D_6 . Conversions were determined by ³¹P NMR.

Comparing to Fig.5, plot without origin:

If the rate-order of H₂PPh is zero:

Fig. S3 Plot of conversion of phenylphosphine versus time (min) for the hydrophosphination reaction of styrene (5a) and phenylphosphine (6) catalyzed by complex 1. Conditions: styrene (5 mmol), phenylphosphine (1 mmol), complex 1 (10 mol %), room temperature. $R^2 = 0.98703$.

Fig. S4 Plot of conversion of ln[phenylphosphine]₀/[phenylphosphine] versus time (min) for the hydrophosphination reaction of styrene (5a) and phenylphosphine (6) catalyzed by complex 1. Conditions: styrene (5 mmol), phenylphosphine (1 mmol), complex 1 (10 mol %), room temperature. $R^2 = 0.99796$.

Catalyst loading of 1 mol %:

Fig. S5 Plot of 1/[phenylphosphine] versus time (min) for the hydrophosphination reaction of styrene (5a) and phenylphosphine (6) catalyzed by complex 1. Conditions: styrene (5 mmol), phenylphosphine (1 mmol), complex 1 (1 mol %), room temperature. $R^2 = 0.99881$.

Fig. S6 Plot of $\ln([phenylphosphine]_0/[phenylphosphine])$ versus time (min) for the hydrophosphination reaction of styrene (**5a**) and phenylphosphine (**6**) catalyzed by complex **1**. Conditions: styrene (5 mmol), phenylphosphine (1 mmol), complex **1** (1 mol%), room temperature. $R^2 = 0.96255$.

Catalyst loading of 3 mol %:

Fig. S7 Plot of 1/[phenylphosphine] versus time (min) for the hydrophosphination reaction of styrene (**5a**) and phenylphosphine (**6**) catalyzed by complex **1**. Conditions: styrene (5 mmol), phenylphosphine (1 mmol), complex **1** (3 mol %), room temperature. $R^2 = 0.99849$.

Fig. S8 Plot of $ln([phenylphosphine]_0/[phenylphosphine])$ versus time (min) for the hydrophosphination reaction of styrene (5a) and phenylphosphine (6) catalyzed by complex 1. Conditions: styrene (5 mmol), phenylphosphine (1 mmol), complex 1 (3 mol %), room temperature. $R^2 = 0.9905$.

Catalyst loading of 5 mol %:

Fig. S9 Plot of 1/[phenylphosphine] versus time (min) for the hydrophosphination reaction of styrene (**5a**) and phenylphosphine (**6**) catalyzed by complex **1**. Conditions: styrene (5 mmol), phenylphosphine (1 mmol), complex **1** (5 mol %), room temperature. $R^2 = 0.99681$.

Fig. S10 Plot of ln([phenylphosphine]₀/[phenylphosphine]) versus time (min) for the hydrophosphination reaction of styrene (5a) and phenylphosphine (6) catalyzed by complex 1. Conditions: styrene (5 mmol), phenylphosphine (1 mmol), complex 1 (5 mol %), room temperature. $R^2 = 0.96704$.

Catalyst loading of 7 mol %:

Fig. S11 Plot of 1/[phenylphosphine] versus time (min) for the hydrophosphination reaction of styrene (**5a**) and phenylphosphine (**6**) catalyzed by complex **1**. Conditions: styrene (5 mmol), phenylphosphine (1 mmol), complex **1** (7 mol %), room temperature. $R^2 = 0.99897$.

Fig. S12 Plot of ln([phenylphosphine]₀/[phenylphosphine]) versus time (min) for the hydrophosphination reaction of styrene (5a) and phenylphosphine (6) catalyzed by complex 1. Conditions: styrene (5 mmol), phenylphosphine (1 mmol), complex 1 (7 mol %), room temperature. $R^2 = 0.97499$.

As in the case of 10 mol% catalyst loading, the plots of 1^{st} order and 2^{nd} order dependence on [H₂PPh] gave very similar R² values, half-life (t_{1/2}) study was conducted to further elucidate the rate order. Two parallel reactions were carried out with different initial concentration, and t_{1/2} were determined.

It is assumed that the total volume of the mixture approximately equals to the initial volume of phenylphosphine plus the initial volume of styrene and did not change during the reaction. Thus, for the reaction plotted in Fig. 13, the initial concentration of phenylphosphine $[H_2PPh]_0 = 1 \text{ mmol} / (0.575 \text{ mL} + 0.110 \text{ mL}) = 1.46 \text{ mol/L}, t_{1/2} = 204 \text{ min}$. In Fig. S14, data are as follows: the initial concentration of phenylphosphine $[H_2PPh]_0 = 1 \text{ mmol} / (1.150 \text{ mL} + 0.110 \text{ mL}) = 0.79 \text{ mol/L}, t_{1/2} = 308 \text{ min}$. Therefore, the reaction order of phenylphosphine can be deduced as follows: $n = 1 + \ln (t_{1/2}/t'_{1/2})/\ln ([H_2PPh]_0) = 1 + \ln(204/308)/\ln (0.79/1.46) = 1.7$.

Fig. S13 Plot of conversion of phenylphosphine versus time (min) for the hydrophosphination reaction of styrene (5a) and phenylphosphine (6) catalyzed by complex 1. Conditions: styrene (5 mmol, 0.575 mL), phenylphosphine (1 mmol, 0.110 mL), complex 1 (10 mol %), room temperature. $R^2 = 0.99984$, $t_{1/2} = 204$ min

Fig. S14 Plot of conversion of phenylphosphine versus time (min) for the hydrophosphination reaction of styrene (**5a**) and phenylphosphine (**6**) catalyzed by complex **1**. Conditions: styrene (5 mmol, 1.15 mL), phenylphosphine (1 mmol, 0.110 mL), complex **1** (10 mol %), room temperature. $R^2 = 0.99965$, $t_{1/2} = 308$ min

Table S1. Ex	perimental	data	of Fig.	3 (conversion	of styrene))
				•			

t(min) conv. trial	120	180	240	300	360
1	55	70	85	89	94
2	57	71	87	89	93
3	56	74	86	90	94

Table S2. Experimental	data of Fig. 4	(conversion of	phenylphosphine)
			/

t(min) conv. trial	120	180	240	300	390	420
1	37	48	58	64	72	73
2	33	49	57	63	70	74
3	32	43	56	64	72	75

X-Ray crystallographic structure determination

Suitable single crystal of complex 4 was sealed in a thin-walled glass capillary for determination the single-crystal structures. Intensity data were collected on an Agilent Xcalibur diffractometer equipped with MoK α radiation (graphite monochromated, $\lambda = 0.71073$ Å). The diffracted intensities were corrected for Lorentz/polarization effects and empirical absorption corrections. Details of the intensity data collection and crystal data were given in Table S3.

The structures were solved by direct methods and refined by full-matrix leastsquares procedures based on $|F|^2$. The hydrogen atoms in these complexes were generated geometrically, assigned appropriate isotropic thermal parameters, and allowed to ride on their parent carbon atoms. All of the hydrogen atoms were held stationary and included in the structure factor calculation in the final stage of full-matrix least-squares refinement. The structures were solved and refined using SHELXL-97 programs.

Table S3. Crystallographic data of complex 4				
compound	4			
formula	C ₅₀ H ₆₉ NO ₂ Zr			
fw	807.28			
Temp (K)	223(2)			
cryst syst	orthorhombic			
color	colourless			
cryst size(mm)	$0.50\times0.30\times0.20~mm$			
space group	P 21 21 21			
a (Å)	11.1352			
b (Å)	17.7158(8)			
c (Å)	23.1421(9)			
a (deg)	90			
β (deg)	90			
γ (deg)	90			
V (Å3)	4565.2(3)			
Dcalcd (g cm ⁻³)	1.175			
Z	4			
radiation used	Μο Κα			
$\mu (mm^{-1})$	0.278			
F(000)	1728			
θ_{max} (deg)	2.88-26.37			
final R indices $(I > 2\sigma(I))$	$R_1 = 0.1054,$			
	wR2=0.1765			
R indices (all data)	$R_1 = 0.0677,$			
	$wR_2 = 0.1567$			
goodness-of-fit on F2	1.051			
Largest diff. peak, hole/e Å-3	1.422, -1.032			

References:

1 a) K. J. Gallagher, M. Espinal-Viguri, M. F. Mahon, R. L. Webster, *Adv. Synth. Catal.* **2016**, *358*, 2460-2468; b) I. V. Basalov, B. Liu, T. Roisnel, A. V. Cherkasov, G. K. Fukin, J.-F. Carpentier, Y. Sarazin, A. A. Trifonov, *Organometallics* **2016**, *35*, 3261–3271; c) M. B. Ghebreab, C. A. Bange, R. Waterman, *J. Am. Chem. Soc.* **2014**, *136*, 9240–9243; d) C. A. Bange, R. Waterman, *ACS Catal.* **2016**, *6*, 6413–6416.