## Crystal structure and luminescence properties of a novel green-yellow-emitting Ca<sub>1.5</sub>Mg<sub>0.5</sub>Si<sub>1-x</sub>Li<sub>x</sub>O<sub>4-δ</sub>:Ce<sup>3+</sup> phosphor with high quantum efficiency and thermal stability

Weiwei Ji<sup>1</sup>, Zhiguo Xia<sup>2</sup>, Ke Liu<sup>1</sup>, Sayed Ali khan<sup>1</sup>,Luyuan Hao<sup>1</sup>, Xin Xu<sup>1,\*</sup>, Liangjun Yin<sup>3</sup>,Maxim S. Molokeev<sup>4,5</sup>, Simeon Agathopoulos<sup>6</sup>, Wenyun Yang<sup>7</sup>, Xiaobai Ma<sup>8</sup>, Kai Sun<sup>8</sup>, Ivan da Silva<sup>9</sup>

<sup>1</sup> Chinese Academy of Sciences Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei Anhui 230026, People's Republic of China

<sup>2</sup> The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China

<sup>3</sup> School of Energy Science and Engineering, University of Electronic Science of China, 2006 Xiyuan Road, Chengdu, P.R. China

<sup>4</sup> Laboratory of Crystal Physics, Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk 660036, Russia

<sup>5</sup> Department of Physics, Far Eastern State Transport University, Khabarovsk, 680021 Russia

<sup>6</sup>Department of Materials Science and Engineering, University of Ioannina, GR-451 10 Ioannina, Greece

<sup>7</sup>State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, P. R. China

<sup>8</sup>Department of Nuclear Physics, China Institute of Atomic Energy, Beijing 102413, P. R. China

9STFC-RAL, ISIS Facility, Harwell Science and Innovation Campus, Didcot, UK OX11 oQX

\* Corresponding author: Tel: +86-551-63600824(o), +86-18655117978(m).

Fax: +86-551-63601592,

E-mail address: xuxin@ustc.edu.cn

## **Supporting Information**

| Table | <b>S1.</b> | Anisotropic | atomic | displacement | parameters | (Å <sup>2</sup> ) | of |
|-------|------------|-------------|--------|--------------|------------|-------------------|----|
|-------|------------|-------------|--------|--------------|------------|-------------------|----|

|     | U <sup>11</sup> | U <sup>22</sup> | U <sup>33</sup> | U <sup>23</sup> | U <sup>13</sup> | U <sup>12</sup> |
|-----|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Cal | 0.0032(4)       | 0.0039(5)       | 0.0055(5)       | 0.0011(3)       | -0.0008(3)      | 0.0006(3)       |
| Mg1 | 0.0032(4)       | 0.0039(5)       | 0.0055(5)       | 0.0011(3)       | -0.0008(3)      | 0.0006(3)       |
| Ca2 | 0.0032(4)       | 0.0169(4)       | 0.0075(4)       | 0.0064(3)       | 0.0004(2)       | -0.0003(3)      |
| Mg2 | 0.0032(4)       | 0.0169(4)       | 0.0075(4)       | 0.0064(3)       | 0.0004(2)       | -0.0003(3)      |
| Ca3 | 0.0039(4)       | 0.0076(4)       | 0.0038(4)       | 0               | -0.0003(2)      | 0               |
| Mg3 | 0.0039(4)       | 0.0076(4)       | 0.0038(4)       | 0               | -0.0003(2)      | 0               |
| Ca4 | 0.0039(4)       | 0.0184(5)       | 0.0044(4)       | 0               | 0.0004(2)       | 0               |
| Mg4 | 0.0039(4)       | 0.0184(5)       | 0.0044(4)       | 0               | 0.0004(2)       | 0               |
| Si1 | 0.0017(5)       | 0.0117(6)       | 0.0031(5)       | 0               | 0.0007(3)       | 0               |
| Lil | 0.0017(5)       | 0.0117(6)       | 0.0031(5)       | 0               | 0.0007(3)       | 0               |
| Si2 | 0.0018(5)       | 0.0245(7)       | 0.0033(5)       | 0               | 0.0003(3)       | 0               |
| Li2 | 0.0018(5)       | 0.0245(7)       | 0.0033(5)       | 0               | 0.0003(3)       | 0               |
| 01  | 0.0078(11)      | 0.0155(13)      | 0.0093(12)      | 0               | 0.0003(9)       | 0               |
| O2  | 0.0074(12)      | 0.0366(16)      | 0.0102(12)      | 0               | 0.0013(9)       | 0               |
| 03  | 0.0111(12)      | 0.0247(14)      | 0.0078(12)      | 0               | 0.0002(9)       | 0               |
| O4  | 0.0094(12)      | 0.0251(15)      | 0.0072(11)      | 0               | -0.0009(9)      | 0               |
| 05  | 0.0081(8)       | 0.0157(9)       | 0.0094(8)       | 0.0012(7)       | 0.0000(6)       | -0.0008(6)      |
| 06  | 0.0145(9)       | 0.0237(10)      | 0.0100(8)       | 0.0045(7)       | 0.0022(7)       | 0.0089(7)       |

 $Ca_{1.51(1)}Mg_{0.49(1)}Si_{0.925(5)}Li_{0.075(5)}O_{4\text{-}\delta}.$ 

| (Ca1/Mg1)—O3 <sup>1</sup>    | 2.203 (2) | (Ca3/Mg3)—O3                  | 2.288 (2) |
|------------------------------|-----------|-------------------------------|-----------|
| (Ca1/Mg1)—O3 <sup>ii</sup>   | 2.203 (2) | (Ca3/Mg3)—O6 <sup>iv</sup>    | 2.348 (2) |
| (Ca1/Mg1)—O6 <sup>iii</sup>  | 2.277 (2) | (Ca3/Mg3)—O6 <sup>xii</sup>   | 2.348 (2) |
| (Ca1/Mg1)—O6 <sup>iv</sup>   | 2.277 (2) | (Ca3/Mg3)—O1                  | 2.417 (2) |
| (Ca1/Mg1)—O2 <sup>v</sup>    | 2.293 (2) | (Ca3/Mg3)—O5 <sup>xiii</sup>  | 2.419 (2) |
| (Ca1/Mg1)—O2 <sup>vi</sup>   | 2.293 (2) | (Ca3/Mg3)—O5                  | 2.419 (2) |
| (Ca2/Mg2)—O4 <sup>vii</sup>  | 2.287 (2) | (Ca4/Mg4)—O4 <sup>ii</sup>    | 2.308 (2) |
| (Ca2/Mg2)—O4                 | 2.287 (2) | (Ca4/Mg4)—O5 <sup>xi</sup>    | 2.345 (2) |
| (Ca2/Mg2)—O1                 | 2.335 (2) | (Ca4/Mg4)—O5 <sup>vii</sup>   | 2.345 (2) |
| (Ca2/Mg2)—O1 <sup>vii</sup>  | 2.335 (2) | (Ca4/Mg4)—O6 <sup>xiv</sup>   | 2.428 (2) |
| (Ca2/Mg2)—O5                 | 2.374 (2) | (Ca4/Mg4)—O6 <sup>ii</sup>    | 2.428 (2) |
| (Ca2/Mg2)—O5 <sup>vii</sup>  | 2.374 (2) | (Ca4/Mg4)—O2                  | 2.473 (2) |
| (Si1/Li1)—O1 <sup>xvi</sup>  | 1.620 (2) | (Si2/Li2)—O2                  | 1.627 (2) |
| (Sil/Lil)—O5                 | 1.638 (2) | (Si2/Li2)—O6 <sup>xiii</sup>  | 1.641 (2) |
| (Si1/Li1)—O5 <sup>xiii</sup> | 1.638 (2) | (Si2/Li2)—O6                  | 1.641 (2) |
| <u>(Si1/Li1)</u> —O4         | 1.655 (2) | (Si2/Li2)—O3 <sup>xviii</sup> | 1.651 (2) |

Table S2. Main bond lengths of  $Ca_{1.51(1)}Mg_{0.49(1)}Si_{0.925(5)}Li_{0.075(5)}O_{4-\delta}$ 

*Symmetry codes:* (i) -*x*+1, -*y*, -*z*; (ii) *x*-1, *y*, *z*; (iii) -*x*, -*y*, -*z*+1; (iv) *x*, *y*, *z*-1; (v) *x*-1, -*y*+1/2, *z*-1; (vi) -*x*+1, *y*-1/2, -*z*+1; (vii) -*x*+1, -*y*, -*z*+1; (viii) *x*-1, *y*, *z*-1; (ix) -*x*, *y*-1/2, -*z*; (x) -*x*, *y*+1/2, -*z*; (xi) -*x*+1, *y*+1/2, -*z*+1; (xii) -*x*+1, -*y*+1, -*z*+1; (xiii) *x*, -*y*+1/2, *z*; (xiv) *x*-1, -*y*+1/2, *z*; (xv) -*x*, *y*+1/2, -*z*+1; (xvi) *x*, *y*, *z*+1; (xvii) *x*+1, *y*, *z*; (xviii) -*x*+2, *y*+1/2, -*z*+1.

|                                        | Crystal data                                                                   |  |  |  |  |  |
|----------------------------------------|--------------------------------------------------------------------------------|--|--|--|--|--|
| Chemical formula                       | Ca <sub>3</sub> MgSi <sub>1.961(6)</sub> Li <sub>0.039(6)</sub> O <sub>8</sub> |  |  |  |  |  |
| $M_r$                                  | 327.91                                                                         |  |  |  |  |  |
| Space group, Z                         | $P2_{1}/c, 4$                                                                  |  |  |  |  |  |
| <i>a</i> , (Å)                         | 9.3416 (4)                                                                     |  |  |  |  |  |
| <i>b</i> , (Å)                         | 5.3045 (3)                                                                     |  |  |  |  |  |
| <i>c</i> , (Å)                         | 13.2848 (7)                                                                    |  |  |  |  |  |
| $\beta$ , (°)                          | 92.088 (2)                                                                     |  |  |  |  |  |
| <i>V</i> , (Å <sup>3</sup> )           | 657.86 (6)                                                                     |  |  |  |  |  |
| $D_x$ , Mg/m <sup>3</sup>              | 3.337                                                                          |  |  |  |  |  |
| $\mu$ , mm <sup>-1</sup>               | 2.981                                                                          |  |  |  |  |  |
| Size                                   | 30×30×20 μm                                                                    |  |  |  |  |  |
|                                        | Data collection                                                                |  |  |  |  |  |
| Wavelength                             | Mo K <sub>α</sub> , λ=0.7106Å                                                  |  |  |  |  |  |
| Measured reflections                   | 24619                                                                          |  |  |  |  |  |
| Independent reflections                | 1509                                                                           |  |  |  |  |  |
| Reflections with $I \ge 2\sigma(I)$    | 1366                                                                           |  |  |  |  |  |
| Absorption correction                  | Multiscan                                                                      |  |  |  |  |  |
| R <sub>int</sub>                       | 0.0564                                                                         |  |  |  |  |  |
| $2\theta_{max}$ (°)                    | 50.48                                                                          |  |  |  |  |  |
| h                                      | $-12 \rightarrow 12$                                                           |  |  |  |  |  |
| k                                      | $-6 \rightarrow 6$                                                             |  |  |  |  |  |
| l                                      | <b>-</b> 17 → 17                                                               |  |  |  |  |  |
|                                        | Refinement                                                                     |  |  |  |  |  |
| $R[F^2>2\sigma(F^2)]$                  | 0.0295                                                                         |  |  |  |  |  |
| $wR(F^2)$                              | 0.0780                                                                         |  |  |  |  |  |
| S                                      | 1.064                                                                          |  |  |  |  |  |
| Weight                                 | $w=1/[\sigma^2(F_o^2)+(0.0532P)^2+0.4782P]$ where                              |  |  |  |  |  |
| $(\Delta/\sigma)_{\rm max}$            | <0.001                                                                         |  |  |  |  |  |
| $\Delta  ho_{max}$ , e/Å <sup>3</sup>  | 0.833                                                                          |  |  |  |  |  |
| $\Delta \rho_{min}$ , e/Å <sup>3</sup> | -0.459                                                                         |  |  |  |  |  |

Table S3. Crystallographic data and main parameters for processing and refinement of Ca<sub>3</sub>MgSi<sub>1.961(6)</sub>Li<sub>0.039(6)</sub>O<sub>8</sub>.

|     | x           | у           | Z           | $U_{ m eq}$ | Occ.      |
|-----|-------------|-------------|-------------|-------------|-----------|
| Cal | 0.07532 (5) | 0.22717 (9) | 0.91873 (4) | 0.0107 (2)  | 1         |
| Ca2 | 0.77479 (5) | 0.17888 (9) | 0.74409 (3) | 0.0105 (2)  | 1         |
| Ca3 | 0.57485 (5) | 0.73283 (9) | 0.90277 (4) | 0.0117 (2)  | 1         |
| Mg  | 0.25314 (7) | 0.7565 (1)  | 0.50395 (5) | 0.0066 (2)  | 1         |
| Si1 | 0.09329 (6) | 0.2278 (1)  | 0.64126 (5) | 0.0045 (2)  | 0.982 (4) |
| Lil | 0.09329 (6) | 0.2278 (1)  | 0.64126 (5) | 0.0045 (2)  | 0.018 (4) |
| Si2 | 0.60032 (6) | 0.7292 (1)  | 0.63311 (5) | 0.0048 (2)  | 0.979 (4) |
| Li2 | 0.60032 (6) | 0.7292 (1)  | 0.63311 (5) | 0.0048 (2)  | 0.021 (4) |
| 01  | 0.1752 (2)  | 0.4571 (3)  | 0.5831 (1)  | 0.0119 (4)  | 1         |
| 02  | 0.6772 (2)  | 0.4539 (3)  | 0.6252 (1)  | 0.0102 (4)  | 1         |
| 03  | 0.6936 (2)  | 0.9205 (3)  | 0.5644 (1)  | 0.0133 (4)  | 1         |
| O4  | 0.1847 (2)  | -0.0276 (3) | 0.6268 (1)  | 0.0099 (4)  | 1         |
| 05  | -0.0590 (2) | 0.2057 (3)  | 0.5770(1)   | 0.0129 (4)  | 1         |
| 06  | 0.0691 (2)  | 0.3135 (3)  | 0.7546 (1)  | 0.0111 (4)  | 1         |
| O7  | 0.4453 (2)  | 0.7124 (3)  | 0.5740(1)   | 0.0147 (4)  | 1         |
| 08  | 0.5936 (2)  | 0.8594 (3)  | 0.7415(1)   | 0.0129 (4)  | 1         |

Table S4. Coordinates of atoms, occupancy, and equivalent isotropic displacement parameters

of Ca<sub>3</sub>MgSi<sub>1.961(6)</sub>Li<sub>0.039(6)</sub>O<sub>8</sub>.

Table S5. Main parameters of processing and refinement of the Ca<sub>3</sub>MgSi<sub>2</sub>O<sub>8</sub>:Li sample

| Compound                  | Ca <sub>3</sub> Mg(Si <sub>1.92(3)</sub> Li <sub>0.08(3)</sub> )O <sub>8</sub> |
|---------------------------|--------------------------------------------------------------------------------|
| Space Group               | $P2_{1}/c$                                                                     |
| <i>a</i> , Å              | 9.3401 (8)                                                                     |
| b, Å                      | 5.3096 (5)                                                                     |
| <i>c</i> , Å              | 13.303 (1)                                                                     |
| <i>β</i> , °              | 92.061 (1)                                                                     |
| <i>V</i> , Å <sup>3</sup> | 659.3 (1)                                                                      |
| Ζ                         | 4                                                                              |
| d-interval, Å             | 0.580-3.627                                                                    |
| No. of reflections        | 3527                                                                           |
| No. of refined parameters | 100                                                                            |
| $R_{wp}, \%$              | 3.40                                                                           |
| $R_{p}, \%$               | 5.53                                                                           |
| $R_{exp}$ , %             | 2.44                                                                           |
| $\chi^2$                  | 1.40                                                                           |
| $R_B, \%$                 | 3.02                                                                           |

| Ca1—O2 <sup>i</sup>    | 2.852 (9) | Ca3—O2 <sup>ix</sup>   | 2.43 (1)  |
|------------------------|-----------|------------------------|-----------|
| Ca1—O3 <sup>ii</sup>   | 2.325 (8) | Ca3—O3 <sup>viii</sup> | 2.72 (1)  |
| Ca1—O4 <sup>i</sup>    | 2.375 (7) | Ca3—O4 <sup>ii</sup>   | 2.32 (1)  |
| Ca1—O5 <sup>iii</sup>  | 2.817 (9) | Ca3—O7                 | 2.55 (1)  |
| Ca1—O6 <sup>iv</sup>   | 2.436 (7) | Ca3—O8 <sup>viii</sup> | 2.47 (1)  |
| Ca1—O6 <sup>iii</sup>  | 2.809 (7) | Mg—O1                  | 2.025 (9) |
| Cal—O7                 | 2.356 (9) | Mg—O2 <sup>ix</sup>    | 2.01 (1)  |
| Ca1—O8                 | 2.622 (9) | Mg—O3 <sup>x</sup>     | 2.149 (9) |
| Ca2—O2 <sup>v</sup>    | 2.527 (8) | Mg—O5 <sup>vi</sup>    | 2.098 (9) |
| Ca2—O3 <sup>v</sup>    | 2.919 (8) | Mg—O7                  | 2.14(1)   |
| Ca2—O5                 | 2.512 (9) | Mg—O8                  | 2.08 (1)  |
| Ca2—O5 <sup>iv</sup>   | 2.808 (9) | (Si1/Li1)—O1           | 1.584 (9) |
| Ca2—O5 <sup>vi</sup>   | 2.473 (9) | (Si1/Li1)—O2           | 1.651 (9) |
| Ca2—O6 <sup>iii</sup>  | 2.168 (8) | (Si1/Li1)—O3           | 1.649 (8) |
| Ca2—O7                 | 2.733 (8) | (Si1/Li1)—O4           | 1.584 (8) |
| Ca2—O8                 | 2.703 (8) | (Si2/Li2)—O5           | 1.624 (9) |
| Ca2—O8 <sup>vii</sup>  | 2.620 (8) | (Si2/Li2)—O6           | 1.63 (1)  |
| Ca3—O1                 | 2.78 (1)  | (Si2/Li2)2—O7          | 1.59(1)   |
| Ca3—O1 <sup>viii</sup> | 2.58 (1)  | (Si2/Li2)—             | 1.61 (1)  |
| Ca3—O1 <sup>ix</sup>   | 2.69(1)   |                        |           |

Table S6. Main bond lengths of Ca<sub>3</sub>MgSi<sub>2</sub>O<sub>8</sub>:Li

Symmetry codes: (i) -*x*+1, *y*-1/2, -*z*+1/2; (ii) -*x*+1, *y*+1/2, -*z*+1/2; (iii) -*x*, *y*-1/2, -*z*+1/2; (iv) *x*, *y*-1, *z*; (v) *x*-1, *y*, *z*; (vi) -*x*, -*y*+1, -*z*; (vii) -*x*, -*y*, -*z*; (viii) *x*, *y*+1, *z*; (ix) -*x*+1, -*y*+1, -*z*; (x) -*x*+1, -*y*, -*z*.

**Table S7.** Full set of 15 CRIs and  $R_a$  of WLED based on 365 nm near-UV chip and 410 nm violet chip.

|                | R1 | R2 | R3 | R4 | R5 | R6 | R7 | R8 | R9 | R10 | R11 | R12 | R13 | R14 | R15 | Ra   |
|----------------|----|----|----|----|----|----|----|----|----|-----|-----|-----|-----|-----|-----|------|
| 365 nm UV chip | 98 | 96 | 90 | 90 | 97 | 94 | 90 | 88 | 79 | 90  | 93  | 90  | 98  | 94  | 93  | 92.8 |
| 410 nm violet  | 93 | 96 | 93 | 80 | 88 | 95 | 88 | 89 | 91 | 94  | 82  | 45  | 93  | 95  | 87  | 90.4 |



**Figure S1.** Comparison of crystal structures of  $\gamma$ -Ca<sub>2</sub>SiO<sub>4</sub> (a), with Ca<sub>1.51(1)</sub>Mg<sub>0.49(1)</sub>Si<sub>0.925(5)</sub>Li<sub>0.075(5)</sub>O<sub>4</sub> (b). Each of the sites A and B of  $\gamma$ -Ca<sub>2</sub>SiO<sub>4</sub> is split into two sites A1, A2 and B1, B2 separately in Ca<sub>1.51(1)</sub>Mg<sub>0.49(1)</sub>Si<sub>0.925(5)</sub>Li<sub>0.075(5)</sub>O<sub>4</sub>. The sites A1 and A2 are preferably occupied by Mg<sup>2+</sup> ions and, therefore, the average bond lengths d(Me-O) of A1 and A2 sites differ noticeably from the bond length of B1 and B2 sites (d), contrary to the situation in the  $\gamma$ -Ca<sub>2</sub>SiO<sub>4</sub> structure (c).



Figure S2. X-ray diffractograms of  $\gamma$ -Ca<sub>2</sub>SiO<sub>4</sub> and Ca<sub>1.51(1)</sub>Mg<sub>0.49(1)</sub>Si<sub>0.925(5)</sub>Li<sub>0.075(5)</sub>O<sub>4</sub> with  $\beta$  = 90°.



**Figure S3.** Coordination polyhedra of two kinds of Ca sites in  $\gamma$ -Ca<sub>2</sub>SiO<sub>4</sub>. The green spheres correspond to Ca, and the red spheres to O. The average coordination distances of A and B sites are 2.352 Å and 2.359 Å, respectively.



Figure S4. DSC-TGA curves of CMSL:0.005Ce<sup>3+</sup> precursor recorded from room temperature to 1450 °C at a heating rate of 10 K/min in flowing N<sub>2</sub> gas atmosphere. The decrease of mass from 750 to 1450 °C is attributed to the evaporation of Li, and the exothermic effect in the cooling curve at ~325 °C is ascribed to the phase transformation of Ca<sub>3</sub>MgSi<sub>2</sub>O<sub>8</sub> to Ca<sub>1.51(1)</sub>Mg<sub>0.49(1)</sub>Si<sub>0.925(5)</sub>Li<sub>0.075(5)</sub>O<sub>4-δ</sub>.



Figure S5. The low-temperature emission spectra ( $\lambda_{ex} = 410$  nm) of the CMSL:0.005Ce phosphor.



**Figure S6.** Ce LIII-edge XANES spectrum of CMSL:0.01Ce fine powder. The positions of  $Ce^{3+}$  and  $Ce^{4+}$  are marked. There is no evidence for  $Ce^{4+}$  in this sample.