Supporting Information

1

Compositional evolution of the NaZn₁₃ structure motif in the systems La–Ni–Ga and Ce–Ni–Ga

Yurii Prots,*^a Leonid Vasylechko,^b Wilder Carrillo-Cabrera,^a Christina Drathen,^c Mauro Coduri,^c Dariusz Kaczorowski,^d Ulrich Burkhardt,^a Yuri Grin*^a

 ^aMax-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Str. 40, 01187 Dresden, Germany
^bLviv Polytechnic National University, 12 Bandera St., 79013 Lviv, Ukraine
^cESRF - the European Synchrotron, 71, Avenue des Martyrs, 38000 Grenoble, France
^dInstitute of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okólna

2, 50-422 Wrocław, Poland

Nominal composition	Space group, (phase amount, wt. %)	<i>a,</i> Å	<i>b,</i> Å	<i>c,</i> Å	<i>V</i> _c , Å ³
LaNi ₁₁ Ga ₂ ^b	Fm3c (87 %)	11.3941(4)	_	-	1479.3(1)
$LaNi_{10.5}Ga_{2.5}*$	I4/mcm	8.05099(7)	_	11.4888(2)	1489.38(6)
$LaNi_{10}Ga_3$	I4/mcm	8.0508(4)	_	11.5750(6)	1500.6(2)
LaNi _{9.75} Ga _{3.25}	I4/mcm	8.0532(4)	-	11.6254(6)	1507.8(2)
LaNi _{9.5} Ga _{3.5}	I4/mcm	8.0541(4)	_	11.6471(6)	1511.0(2)
LaNi _{9.25} Ga _{3.75}	I4/mcm	8.0529(4)	_	11.6855(6)	1515.6(2)
LaNi ₉ Ga ₄ *	I4/mcm	8.05861(3)	_	11.75707(7)	1527.04(2)
LaNi _{8.75} Ga _{4.25} *	I4/mcm	8.0630(1)	_	11.7760(2)	1531.18(8)
LaNi _{8.63} Ga _{4.37} *	I4/mcm	8.06763(9)	_	11.7903(2)	1534.78(6)
LaNi _{8.5} Ga _{4.5} *	Ibam	7.9270(3)	8.2221(3)	11.8117(4)	1539.7(2)
LaNi _{8.25} Ga _{4.75} *	Ibam	7.8900(1)	8.2748(1)	11.8360(2)	1545.50(6)
LaNi ₈ Ga₅*	Ibam	7.84446(7)	8.34335(7)	11.86514(9)	1553.12(4)
LaNi _{7.75} Ga _{5.25} *	Ibam	7.82855(9)	8.38497(9)	11.8861(1)	1560.46(6)
LaNi _{7.5} Ga _{5.5} *	Ibam	7.8268(1)	8.4150(2)	11.9041(2)	1568.06(8)
LaNi _{7.25} Ga _{5.75} *	Ibam	7.82870(7)	8.43691(9)	11.9207(1)	1574.74(4)
LaNi _{6.88} Ga _{6.12} *	Ibam (73 %)	7.8443(3)	8.4503(4)	11.9309(6)	1581.8(2)
	Fmmm (27%)	11.4520(1)	11.9053(9)	11.7147(9)	1597.2(4)
LaNi _{6.75} Ga _{6.25} *	<i>Ibam</i> (46 %)	7.8415(3)	8.4542(3)	11.9111(5)	1579.3(1)
	<i>Fmmm</i> (54 %)	11.4473(3)	11.9043(3)	11.7136(3)	1596.3(2)
LaNi _{6.63} Ga _{6.37} *	Fmmm	11.4537(2)	11.9004(2)	11.7218(2)	1597.72(8)
LaNi _{6.5} Ga _{6.5} *	Fmmm	11.46196(9)	11.89553(8)	11.73591(8)	1600.15(4)
LaNi _{6.25} Ga _{6.75} *	Fmmm	11.5604(2)	11.8387(2)	11.7711(2)	1611.00(6)
LaNi _{6.13} Ga _{6.87} *	Fmmm	11.6294(1)	11.7870(2)	11.7871(2)	1615.71(7)
LaNi ₆ Ga ₇ *	I4/mcm	8.28529(8)	_	11.8053(2)	1620.78(6)
LaNi _{5.5} Ga _{7.5} *	I4/mcm	8.32050(2)	-	11.83597(4)	1638.83(1)
LaNi _{5.25} Ga _{7.75} ^c	I4/mcm (66 %)	8.3232(5)	_	11.8370(9)	1639.9(4)
LaNi₅Ga ₈ ^c	I4/mcm (56 %)	8.3226(5)	-	11.8380(9)	1639.8(4)

Table S1 Crystallographic data of the LaNi_{13-x}Ga_x samples $(2 \le x \le 8)^a$

^{*a*} unit cell volumes (V_c) is normalized to the aristotype NaZn₁₃-type cubic cell as follow:

 $V_{c} = 2V_{t} (I4/mcm); V_{c} = 2V_{o} (Ibam); V_{c} = V_{o} (Fmmm);$

^b neighboring phases: La(Ni_{1-x}Ga_x)₅ and Ni;

^c neighboring phases: $La(Ni_{1-x}Ga_x)_4 + Ni_2Ga_3;$

* X-ray synchrotron data (ID22 at ESRF).

Nominal composition	Space group, (phase amount, wt. %)	<i>a,</i> Å	<i>b,</i> Å	<i>c,</i> Å	<i>V</i> _c , Å ³
CeNi ₁₀ Ga ₃ ^b	_	-	-	-	-
CeNi _{9.75} Ga _{3.25} ^b	I4/mcm (32 %)	8.036(1)	-	11.708(3)	1512.0(8)
CeNi _{9.5} Ga _{3.5} ^b	I4/ <i>mcm</i> (69 %)	8.0360(7)	-	11.709(2)	1512.2(6)
CeNi _{9.25} Ga _{3.75} ^b	I4/mcm (83 %)	8.0347(3)	-	11.7074(6)	1511.6(2)
CeNi ₉ Ga ₄ ^b	I4/mcm (96 %)	8.0369(4)	-	11.7159(8)	1513.6(2)
${\sf CeNi}_{8.75}{\sf Ga}_{4.25}{\rm *}$	I4/mcm	8.04614(2)	-	11.75153(4)	1521.60(2)
CeNi _{8.5} Ga _{4.5} *	Ibam	7.9212(2)	8.1896(3)	11.7815(3)	1528.6(2)
$CeNi_{8.25}Ga_{4.75}{}^{*}$	Ibam	7.84488(9)	8.28690(9)	11.8144(1)	1536.1(1)
CeNi ₈ Ga ₅	Ibam	7.8041(8)	8.3420(9)	11.836(2)	1541.2(6)
CeNi _{7.75} Ga _{5.25}	Ibam	7.7796(1)	8.3935(1)	11.8581(2)	1548.64(6)
CeNi _{7.5} Ga _{5.5}	Ibam	7.7792(5)	8.4273(5)	11.8809(8)	1557.8(4)
$CeNi_{7.25}Ga_{5.75}*$	Ibam	7.78328(6)	8.45196(6)	11.90233(9)	1565.96(4)
CeNi7Ga6	Ibam	7.7937(7)	8.4641(7)	11.916(1)	1570.2(4)
CeNi _{6.88} Ga _{6.12}	<i>lbam</i> (66 %)	7.808(4)	8.466(4)	11.905(7)	1573.8(9)
	Fmmm (34 %)	11.426(3)	11.872(3)	11.703(3)	1587.6(9)
CeNi _{6.75} Ga _{6.25} *	<i>lbam</i> (10 %)	7.802(1)	8.469(2)	11.908(3)	1573.6(8)
	Fmmm (90 %)	11.4281(3)	11.8742(4)	11.7097(3)	1589.1(2)
CeNi _{6.63} Ga _{6.37}	Fmmm	11.424(2)	11.875(2)	11.700(2)	1587.3(8)
CeNi _{6.5} Ga _{6.5} *	Fmmm	11.42882(2)	11.87373(2)	11.71262(2)	1589.44(1)
CeNi _{6.25} Ga _{6.75}	Fmmm	11.5245(6)	11.8103(7)	11.7454(8)	1598.6(3)
$\text{CeNi}_{6.13}\text{Ga}_{6.87}\text{*}$	Fmmm	11.6092(3)	11.7489(4)	11.7659(3)	1604.8(1)
CeNi ₆ Ga ₇	I4/mcm	8.2629(4)	-	11.7866(8)	1609.4(4)
CeNi _{5.75} Ga _{7.25}	I4/mcm	8.2819(2)	-	11.8015(3)	1618.9(1)
CeNi _{5.63} Ga _{7.37}	I4/mcm	8.2864(7)	-	11.805(2)	1621.2(4)
CeNi _{5.5} Ga _{7.5} ^c	I4/mcm (52 %)	8.286(4)	-	11.804(8)	1621.0(9)
CeNi _{5.38} Ga _{7.62} ^c	I4/mcm (39 %)	8.286(2)	-	11.804(4)	1620.9(9)

Table S2 Crystallographic data of the CeNi_{13-x}Ga_x samples $(3 \le x \le 7.62)^a$

^{*a*} unit cell volumes (V_c) is normalized to the aristotype NaZn₁₃-type cubic cell as follow: $V_c = 2V_t (I4/mcm); V_c = 2V_o (Ibam); V_c = V_o (Fmmm);$

^{*b*} neighboring phases: Ce(Ni_{1-x}Ga_x)₅ + Ni₃Ga;

^c neighboring phases: Ce(Ni_{1-x}Ga_x)₄ + Ni₂Ga₃;

* X-ray synchrotron data (ID22 at ESRF).

Figure S1. Selected area diffraction patterns of LaNi_{6.5}Ga_{6.5} along [100]*, [101]*, [301]* and [211]* directions, showing that the crystal structure is *F*-centered.

Figure S2. Projections of 3D diffraction pattern (reciprocal volume) for LaNi_{6.5}Ga_{6.5} sample along (a) [100], (b) [010] and (c) [001] directions. Extra reflections originate from neighboring twin crystal.

Figure S3. Deformation of the coordination polyhedron of the La position (snub cube) in $LaNi_{13-x}Ga_x$ series. Rhombic distortion (obtuse angle) of the initially quadratic faces of snub cubes is used as a measure of the deformation.

Figure S4. Group-subgroup relations in the Bärningshausen formalism for the four NaZn₁₃related types of structure observed in the LaNi_{13-x}Ga_x and CeNi_{13-x}Ga_x series, which are presented on the basis of the La system. The indices of the *translationsgleiche* (*t*) transitions and the unit cell transformations are given.

Figure S5. Coordination polyhedra around La atoms in the structures ol56 and oF112 projected along [001] and [010], respectively.

Figure S6. Temperature dependencies of the reduced electrical resistivity of two selected alloys from the $CeNi_{13-x}Ga_x$ series, i.e. $CeNi_{5.25}Ga_{7.75}$ (upper curve) and $CeNi_{7.25}Ga_{5.75}$ (lower curve).