Supporting Information

Amorphous mesoporous nickel phosphate/reduced graphene oxide with superior performance for electrochemical capacitors

Jingjing Yuan 1,2, Xiaoke Zheng 2, Dachuan Yao 2, Ling Jiang 2, Ya Li 2, Jianfei Che 1*, Guangyu He 2, Haiqun Chen 2*

(1School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
2Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, Jiangsu 213164, China)

The XPS spectra of O 1s is presented in Fig. S1, which is a typical peak at 531.4 eV.

![Figure S1. XPS spectra of element O in Ni3(PO4)2/rGO-300.](image)

The FTIR spectra of GO, Ni3(PO4)2-300 and Ni3(PO4)2/rGO-300 is presented in Fig. S2.

![Figure S2. FTIR spectra of GO, Ni3(PO4)2-300 and Ni3(PO4)2/rGO-300.](image)

The TGA curve of Ni3(PO4)2/rGO-300 and Ni3(PO4)2-300 is shown in Fig. S3.
Figure S3. TGA curve of Ni$_3$(PO$_4$)$_2$/rGO-300 and Ni$_3$(PO$_4$)$_2$-300 in Nitrogen.

The BET isotherms of Ni$_3$(PO$_4$)$_2$/rGO-900 is shown in Fig. S4 and there is almost no specific surface area, indicating significant decrease of the surface area in the condition.

Figure S4. N$_2$ adsorption-desorption isotherm of Ni$_3$(PO$_4$)$_2$/rGO-900.

Fig. S5 shows the Nyquist plots of Ni$_3$(PO$_4$)$_2$/rGO-300//AC.

Figure S5. Nyquist plots of Ni$_3$(PO$_4$)$_2$/rGO-300//AC